
From Tabular Data to Knowledge Graphs: A Survey of Semantic Table
Interpretation Tasks and Methods

Jixiong Liua,b, Yoan Chabota,∗, Raphaël Troncyb, Viet-Phi Huynha, Thomas Labbéa, Pierre Monnina

aOrange, France
bEURECOM, Sophia Antipolis, France

Abstract

Tabular data often refers to data that is organized in a table with rows and columns. We observe that this data format
is widely used on the Web and within enterprise data repositories. Tables potentially contain rich semantic information
that still needs to be interpreted. The process of extracting meaningful information out of tabular data with respect
to a semantic artefact, such as an ontology or a knowledge graph, is often referred to as Semantic Table Interpretation
(STI) or Semantic Table Annotation. In this survey paper, we aim to provide a comprehensive and up-to-date state-of-
the-artreview of the different tasks and methods that have been proposed so far to perform STI. First, we propose a new
categorization that reflects the heterogeneity of table types that one can encounter, revealing different challenges that
need to be addressed. Next, we define five major sub-tasks that STI deals with even if the literature has mostly focused
on three sub-tasks so far. We review and group the many approaches that have been proposed into three macro families
and we discuss their performance and limitations with respect to the various datasets and benchmarks proposed by the
community. Finally, we detail what are the remaining scientific barriers to be able to truly automatically interpret any
type of tables that can be found in the wild Web.

Keywords: Semantic Table Interpretation, Table annotation, Tabular data, Knowledge graph

1. Introduction

Data formats such as CSV/TSV, PARQUET, XML
and JSON are commonly used to train machine learn-
ing algorithms. We focus on CSV, TSV and spreadsheet
files and we argue that while this tabular data format is,
compact, readable and simple to process, it does not self-
explain the meaning of the information even if headers
are present. Hence, interpreting tabular data becomes a
crucial task and it has attracted a lot of attention in re-
cent years, with, in particular, the crystallization of re-
search efforts around challenges such as the SemTab se-
ries [32, 53, 54]. The main idea to make tabular data intel-
ligently processable by machines is to find correspondences
between the elements composing the table with entities,
concepts, or relations described in knowledge graphs (KG)
which can be of general purposes such as DBpedia [17]
and Wikidata [103], or enterprise specific. This problem is
known as Semantic Table Interpretation (STI) or Semantic
Table Annotation. KGs can be used to drive the semantic
interpretation of tabular data while being themselves the
artefacts that can be further enriched from the result of
the interpretation process. In this latter case, tabular data
becomes a means to either populate a nascent KG or im-
prove the quality of an established one. Adding a semantic

∗Yoan Chabot
Email address: yoan.chabot@orange.com (Yoan Chabot)

layer on top of tabular data, in order to make the latent
meaning explicit and exploitable through a structured and
shared format, is an invaluable step towards efficient and
intelligent use of data. It opens up opportunities for new
semantic-based services: leverage semantic annotation to
better index datasets in search engines [13, 22], improve
question/answering systems [77, 94, 113], enrich knowl-
edge bases [84, 112, 119] or enhance dataset recommenda-
tion [117]. The emergence of specialized search engines for
datasets such as Google Dataset Search [11, 75] is another
prominent example.

Tabular data is challenging to interpret by machines
because of the limited context available to resolve seman-
tic ambiguities, the layout of tables that can be difficult to
handle, and the incompleteness of KGs in general. Clas-
sical Natural Language Processing (NLP) tasks for un-
structured text handle poorly such tables since they do
not leverage the table structure and the underlying seman-
tics [121]. For example, in the table depicted in Figure 7(b)
(page 7), the mention “Rohr” is ambiguous as it can refer
to a surname (Q16882196), a manufacturer (Q2391081),
or a municipality in Germany (Q583512). However, this
ambiguity can be resolved when taking into account the
table structure and, in particular, the fact that the “Man-
ufacturer” column only contains companies.

This work aims to comprehensively define the various
sub-tasks that belong to STI and to review the many meth-
ods that have been proposed so far, along with their lim-

Preprint submitted to Elsevier November 13, 2022

itations and performances on well-established evaluation
datasets of the STI community. To the best of our knowl-
edge, such a survey is still missing in the community. Re-
lated surveys have recently been published, on Web tables
retrieval and enrichment [118], on tables extraction, trans-
formation and understanding [19], on deep learning with
tabular data [8, 21] and on information extraction on the
Web [62]. However, those surveys do not focus on the STI
process. We, therefore, aim to complement these surveys
by providing a new categorization reflecting the hetero-
geneity of tabular data that one can encounter and that
yields new challenges.

The remainder of this paper is structured as follows.
In Section 2, we describe the research methodology that
has been used to make this survey. Next, we provide some
preliminaries that are essential for understanding the con-
text of STI and we propose a new fine-grained taxonomy
of table types (Section 3). In Section 4, we define five sub-
tasks that are relevant to STI, namely: cell-entity anno-
tation, column-type annotation, columns-property anno-
tation [53, 54], topic annotation, and row-to-instance an-
notation [84]. We also propose a macro-common pipeline
that fulfils the tasks of STI from pre-processing of the in-
put table to the final annotation results. In Section 5,
we review the many approaches that have been proposed
grouping them into three families (not mutually exclusive)
respectively based on heuristics, feature engineering, and
deep learning. In Section 6, we make an inventory of the
gold-standard datasets commonly used to evaluate STI ap-
proaches and we analyse their strengths and weaknesses.
We describe the current performances of STI systems on
these datasets in Section 7. We elicit the open scientific
challenges for the community in Section 8 before conclud-
ing the paper in Section 9.

2. Research Methodology

In this section, we describe our research methodology
for collecting and to analysing scholar articles relevant to
STI tasks, approaches and results.

We observe that most of the work was published be-
tween 2000 and 2021. Consequently, our work covers ar-
ticles published within these two decades. To collect the
relevant papers, we primarily make use of Google Scholar.
We first use a combination of keywords from two lists: a
list of terms reflecting the tasks we are interested in (“se-
mantic annotation”, “annotation”, “semantic interpreta-
tion”, “interpretation”, “knowledge graph matching”, “se-
mantic matching”, “semantic labelling”, “type prediction”,
“entity linking”, “entity typing”, “knowledge graph map-
ping”, “semantic mapping”, “relation extraction”) and an-
other list of terms scoping the domain (“web table”, “ta-
ble”, “tabular data”, “structured data”). This list of terms
was manually created when reading relevant papers such
as the ones from the SemTab challenge1. For example, a

1https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

valid combination is “web table semantic annotation”. For
each query, we retrieve the 10 most cited papers among the
relevant results. We read the abstract of each retrieved
paper and judge whether the paper is relevant for STI
(e.g., presentation of a method for matching a table ele-
ment with a given KG, introduction of a new dataset) or
not. Then, we extend this initial corpus by retrieving, for
each paper previously selected, their 10 most cited papers.
The newly selected papers are then filtered according to
the methodology used in the first phase. Besides Google
Scholar, we use the same keyword-based methodology and
co-citation network for finding relevant papers that have
been made available on arXiv. This enables us to account
for the very latest research work in this fast-moving field
even if these papers have not yet been peer-reviewed or
cited. Finally, we have also collected the papers from the
SemTab challenge which is the most relevant competition
for this domain.

Figure 1: Distribution of the publication years of the papers selected
for this review.

Using this method, we generated 48 combinations of
keywords to search on Google Scholar and we selected 38
distinct references in the first phase. The co-citation net-
work has brought 58 additional papers in the second phase.
We added 7 arXiv papers and 22 SemTab papers to this
selection. In summary, while more than seven hundred pa-
pers have been collected and read, 114 papers have been
assessed to be relevant in this two-phase selection process.
Figure 1 depicts the time distribution of the publication
of these articles. It shows the growing importance of STI
in the literature over the last decade. We manually tagged
each article into six categories (Figure 2). Note that some
articles may address more than one research focus. For
example, [60] provides both a dataset and a method for
performing STI. The core of this survey is focused on STI
systems but it also covers tangentially related topics such
as the need for knowledge graphs and schemas to anchor
the interpretation of tabular data or the importance of
pre-processing tables, using NLP techniques for example.

2

https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

Figure 2: Distribution of the topics of the papers selected for this
survey.

3. Preliminaries

The first and main input of an STI system is the ta-
ble itself. As there is an important heterogeneity of ta-
bles considering their layout, provenance, and usage, we
propose a new fine-grained classification based on existing
classifications with a deeper analysis of relational tables
(Section 3.1). This classification of tables is intended to
make it easier to define the scope of STI approaches pro-
posed in the literature and to help identify the challenges
related to STI tasks.

Tables do not always appear alone in real-life scenar-
ios. Alongside the data contained in a table, metadata
and the context in which a table appears are also valu-
able information for STI. For example, if a table has been
published on a Web page describing the Bundesliga, it is
probably more relevant to football than any other sport.
Hence when extracting the table, it would be useful to
collect both the table itself and its metadata. Section 3.2
provides a list of elements attached to the table carrying
semantic information useful for interpretation.

Finally, STI uses KGs as sources of information and
as references for producing annotations. Section 3.3 high-
lights the most commonly used KGs for table interpreta-
tion and discusses their specificities and what they imply
for the STI tasks.

3.1. Tables

A table is a two-dimensional arrangement of data with
n lines and m columns. This enables a compact visual-
ization for reading. A cell is the basic element of a table
where Tij (0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1) indicates the
cell from row i and column j of table T . Tables are highly
heterogeneous in terms of structure, content, and purpose.
Therefore, before interpreting a table, it is important to
identify its type so that potential specificities can be taken
into account in the STI process.

We introduce a multi-level classification of tables based
on several aspects. The first classification effort splits
tables into two high-level categories: genuine and non-
genuine [78, 106]. Genuine tables are firstly defined as

two-dimensional structures with simple cells (i.e. short
and without any complex structures) and a high level of
coherence (syntactically and semantically) within rows and
columns in [78]. Non-genuine tables are structures used
to group contents for easy viewing [106]. One limitation
of this dichotomy is that it does not consider tables with
long and complex cell contents which are still semantically
coherent. For example, we can observe cells containing
a list of comma-separated entities (row “Celebration”) or
mixing text and entities (row “Significance”) in the in-
fobox depicted in Figure 6(b). According to the definition
provided in [78] and used in [82], this table will not be con-
sidered a genuine table while, arguably, this table carries
semantic information worth to be processed.

In more recent works, [30, 57] proposed two similar
classes associated with a set of sub-classes: relational knowl-
edge tables including vertical and horizontal listings, at-
tribute/value table, matrix, etc. and layout tables includ-
ing tables used for navigation and formatting purposes.
This classification focuses mostly on relational knowledge
and is therefore not comprehensive enough to cover all
possibilities. For example, some tables do not have inter-
relation between table elements and are not for layout pur-
poses either. This is the case of the table depicted in Fig-
ure 6(d) where there is no information about the common
relationship between each cell.

In order to cope with these shortcomings, we propose
a new classification of table types, shown in Figure 3, that
rely on the existing work presented in [35, 57, 58, 78, 82,
108, 118] and consider overlapping dimensions. This clas-
sification also contributes to a better identification of re-
lational tables in embracing their diversity.

Figure 3: Classification of table types with a finer-grained analysis of
genuine tables along three dimensions: structure, inner-relationship
and orientation.

We first consider that tables can be separated into two
broad categories. Layout tables are used to format Web
pages. Elements of these structures are not semantically
consistent and are not linked by semantic relationships.
They are used to visually organise the content of a page in
order to maximise user comfort and site usability. A lay-
out table used on Amazon to provide the order interface

3

is given in Figure 4. Genuine tables represent in rows or
columns human-understandable knowledge. In the litera-
ture, genuine tables are said to be short and without com-
plex structure [78]. We relax this concept by considering
that tables with a high level of coherence (syntactically and
semantically) within rows and columns are genuine tables,
without considering the table complexity. For example,
in Figure 4, the semantic of the two genuine tables is the
description attributes (e.g., price, color) of the product.
Genuine tables contain relational knowledge that should
be machine-interpretable, and thus, they constitute valid
inputs for the STI process. On the contrary, layout tables
are convenient for improved visual presentation but the se-
mantic association between their cells is relatively sparse.
Hence, they are not eligible for knowledge extraction and
interpretation.

Figure 4: Illustration of genuine tables and layout tables on the Amazon
website.a

ahttps://www.amazon.com/Furinno-14035EX-Study-Table-Espresso/
dp/B00NIYX9LC

Previous works have also proposed to classify tables
starting from different entry points and further segment
genuine tables along different dimensions [35, 57, 82, 118].
However, the state of the art considers that these table
types are mutually-exclusive which does not cover the het-
erogeneity and complexity of genuine tables. Consequently,
we propose to categorize genuine tables using three non-
mutually exclusive dimensions: structure, inner relation-
ship, and orientation. Table types are then formed by a
composition of these dimensions. For example, the table
depicted in Figure 5(c) about railway lines is a concise
table (structure dimension), a horizontal table (orienta-
tion dimension), and a composed-subject relational table
(inner-relationship dimension). In the following sections,
we further define each of these three dimensions.

3.1.1. Structure Dimension

[57] focuses on the layout structure of a table, which is
mainly reflected in the table elements’ composition. Ac-
cordingly, the subclass “Structure Dimension” of our clas-
sification is divided into the following four types of tables
illustrated in Figure 5. Nested tables contain one or
more tables in one or more of their cells. Figure 5(a) de-
picts a nested table as the main table contains a table
about risk levels of hazardous materials in one of its cells.
Split tables contain sub-tables with cells that are inde-
pendent of those in the other sub-tables. [57] defines split
tables as a sequential repetition of rows or columns. We
enforce this definition by defining split tables as tables that
can be split into sub-tables. To illustrate, in the table in
Figure 5(b), the infobox of the city of Chicago is composed
of several sub-tables. Each sub-table describes one concept
of the subject of the original table, e.g., location, area, and
population of the main Chicago entity. Concise tables
contain merged cells in order to avoid repetitions of cells
referring to the same content in rows and/or columns. In
the table presented in Figure 5(c), the first cell of the col-
umn “lines” merges six individual cells with the same value
“BART main lines”. Multivalued tables contain mul-
tiple values in a single cell. For example, in Figure 5(d),
the cells of the column “lines used” contain a list of route
lines.

3.1.2. Inner-relationship Dimension

The inner-relationship dimension considers the topol-
ogy of the semantic connection between the cells. [30] first
gave a detailed classification of relational knowledge tables
into listings, attribute or value tables, matrices, enumera-
tions, and forms. [35] has extracted Web tables that are
classified into listings, matrices and other tables to capture
enumerations, calendars, etc. [58, 82] have extended this
categorization with a fourth kind named “entity tables”
while listings are considered as relational tables.

Accordingly, we propose the following types. Rela-
tional tables are structures in which each row (resp. col-
umn) provides information about a specific entity, and the
corresponding columns (resp. rows) represent attributes
that describe the entity. Hence, relational tables are ori-
ented, either horizontally or vertically, depending on the
arrangement of the entities and their attributes in the ta-
ble. If the rows of a relational table contain the entities
and the columns the attributes, then the table is horizon-
tal. Otherwise, it is vertical. Relational tables may have
a header, usually in the first row or the first few rows
for horizontal tables. As an example, Figure 6(a) depicts
a horizontal relational table where each row describes a
tower with its attributes (e.g., height, year, country, and
town). Entity tables, also known as attribute-value ta-
bles, are used to describe a unique entity. An entity table
enumerates the attributes of the entity. Infoboxes from
Wikipedia are examples of entity tables. For example, the
distinct attributes and their values for the entity “Bastille
Day” are shown in the table in Figure 6(b). It should be

4

https://www.amazon.com/Furinno-14035EX-Study-Table-Espresso/dp/B00NIYX9LC
https://www.amazon.com/Furinno-14035EX-Study-Table-Espresso/dp/B00NIYX9LC

Figure 5: Examples of different structures of tables: (a) a nested tablea, (b) a split tableb, (c) a concise table (column “lines”)c, (d) a
multivalued table (column “lines used”)d.

ahttps://en.wikipedia.org/wiki/Table (information)
bhttps://en.wikipedia.org/wiki/Chicago
chttps://en.wikipedia.org/wiki/Bay Area Rapid Transit#Rollingstock
dhttps://en.wikipedia.org/wiki/Bay Area Rapid Transit#Infrastructure

noted that entity tables could also be seen as two-column
vertical or two-row horizontal relational tables. Matrix
tables present a two-dimensional arrangement of data that
should be read simultaneously horizontally and vertically.
A matrix associates pairs (row, column) with cell values
through one unique property for the whole table. Gener-
ally, cells contain numeric or boolean values. Figure 6(c)
shows a vowel confusion matrix that quantifies the un-
derstanding of vowels between people. It associates pairs
(vowel produced, vowel perceived) with the number of per-
sons having this perception of the produced vowel. For
example, one person perceived an “a” when an “i” was
produced. Bold numbers correspond to correct identifica-
tions. Other genuine tables contain semantic information
but do not fit within the aforementioned types. Tables in
this class include enumerations and calendars. To illus-
trate, Figure 6(d) is an enumeration table where each col-
umn is an independent enumeration of pronouns according
to a pronoun type.

The literature considers relational tables as a leaf in
the proposed table type taxonomies [58, 82, 108]. How-

ever, relational tables exhibit an important diversity, es-
pecially in the representations of entities. We propose to
further classify them depending on the characteristics of
their subjects. The subject of a row of a horizontal rela-
tional table (resp. column of a vertical relational table) is
an entity that is described by the collections of cells in this
row (resp. column). For example, in the table depicted in
Figure 6(a), the entity “Tokyo Skytree” (Q57965) is the
subject of the first row as it is described by the other en-
tities of this row: “2011” (Q1994), “Japan” (Q17), and
“Tokyo” (Q1490).

We introduce four subtypes of relational tables (Fig-
ure 7). Single-cell-subject tables associate each row of
a horizontal table (resp. column for a vertical table) to a
single subject. Labels of subjects are given in a single col-
umn (resp. row). To illustrate, in Figure 7(a), the column
“department” contains the subjects. The other columns
describe the subjects. Composed-subject tables require
the combination of multiple cells to form the subject of
each row (resp. column). For instance, in a table that
describes persons with first and last names in different

5

https://en.wikipedia.org/wiki/Table_(information)
https://en.wikipedia.org/wiki/Chicago
https://en.wikipedia.org/wiki/Bay_Area_Rapid_Transit#Rolling stock
https://en.wikipedia.org/wiki/Bay_Area_Rapid_Transit#Infrastructure

Figure 6: Examples of different inner-relationships of tables: (a) a horizontal relational tablea, (b) an entity tableb, (c) a matrix tablec, (d)
an enumeration tabled which belongs to “other genuine tables”.

ahttps://en.wikipedia.org/wiki/Eiffel Tower
bhttps://en.wikipedia.org/wiki/Bastille Day
chttps://en.wikipedia.org/wiki/Whistled language#Lack of comprehension
dhttps://en.wikipedia.org/wiki/Pronoun#English pronouns

columns, it is necessary to merge these two columns to
get the complete identifiers of entities. Similarly, in the
table shown in Figure 7(b), one can identify subjects (par-
ticular train classes) by merging columns “Lines”, “Man-
ufacturer” and “Class”. Multi-subject tables contain
cells that refer to different subjects while being in the
same row. In Figure 7(c), a row is composed of two sub-
jects: “Artist/s” is the subject of the column “Nationality”
while “Album” is the subject of columns “Release year”,
“Artist/s”, “Worldwide sales”, and “Ref(s)”. Hidden-
subject tables do not explicitly mention the subject of
each row (resp. column). For example, in Figure 7(d),
each row describes the result of a football match, but the
mention of the match itself is not made explicit in the
table.

3.1.3. Orientation Dimension

The orientation dimension considers the direction of
the relationships inside a table [35, 57]. Indeed, know-
ing the direction of relationships within a table simplifies
its interpretation, e.g., to read the attributes describing a
subject.

In Horizontal tables, subjects are described horizon-
tally, which means that each row describes a different sub-

ject. For example, in Figure 6(a), the subject “Dragon
Tower” and its attribute “Harbin” are in the same row. In
Vertical tables, subjects are described vertically, which
means that each column describes a different subject. An
example of a vertical table is depicted in Figure 6(b),
where the attributes of the entity “Bastille Day” are in
the same column. Matrix tables are defined as for the
inner-relationship dimension. They cannot be interpreted
row by row or column by column but rather cell by cell
while simultaneously considering both horizontal and ver-
tical headers. For example, the matrix in Figure 6(c)
should be interpreted cell by cell while taking into account
both horizontal and vertical headers to read the number
of persons that have a specific perception of a produced
vowel.

3.1.4. Table Types Statistics

We introduced in Figure 3 a multi-dimensional and
fine-grained classification of table types. In this section,
we aim to survey how frequent these types of tables are
used in the wild. DWTC [35] has randomly selected 26,645
tables from the WDC Web Table Corpus [58] and has con-
cluded that the resulting corpus was made of 96% layout
tables and 4% genuine tables. Regarding the structure di-

6

https://en.wikipedia.org/wiki/Eiffel_Tower
https://en.wikipedia.org/wiki/Bastille_Day
https://en.wikipedia.org/wiki/Whistled_language#Lack_of_comprehension
https://en.wikipedia.org/wiki/Pronoun#English_pronouns

Figure 7: Examples of different relational tables: (a) a single-cell-subject relational tablea, (b) a composed-subject relational tableb, (c) a
multi-subject relational tablec, (d) a hidden-subject relational tabled.

ahttps://en.wikipedia.org/wiki/France#Major%20cities
bhttps://en.wikipedia.org/wiki/Bay Area Rapid Transit
chttps://en.wikipedia.org/wiki/List of best-selling albums of the 21st century
dhttps://fr.wikipedia.org/wiki/Coupe du monde de football 1998

mension, [57] has extracted 342,795 Web tables (from var-
ious websites starting from Wikipedia, e-commerce, news
and university Web sites) and has identified that 75.5%
of the tables are for layout while the remaining tables are
relational knowledge tables. [57] has also provided the dis-
tribution of nested tables, split tables, concise tables, and
multivalued tables among the relational knowledge tables,
which are respectively 3.7%, 2.6%, 12.9%, and 74.9%. Re-
garding the inner-relationship dimension, [58] applied the
DWTC framework on the 233 million Web tables of the
WDC Web Table Corpus to detect the type of each table
w.r.t the inner-relationship dimension. Results show that
relational tables, entity tables, and matrices respectively
constitute 39%, 60%, and 1% of the corpus. Regarding the
orientation, the distribution of horizontal tables and ver-
tical tables is 54.9% and 45.1% for entity tables, and 94%
and 6% for relational tables in the WDC Web Table Cor-
pus. In [57], the authors show that 70% of the relational
knowledge tables are horizontal.

Our proposed classification goes further into the de-
tails. However, identifying some table type such as hidden-
subject tables remains an open scientific challenge. To
date, we have not identified an approach to automatically
classify tables with a level of granularity close to the clas-
sification proposed in this paper.

3.2. Metadata

Several STI works stress that one of the challenges
to be addressed is the loss of context when annotating
a table [118]. Indeed, tables do not constitute the unique
source of information that can be used by STI processes
since the context in which they appear may provide com-
plementary or novel information. Such non-table informa-
tion constitutes the metadata of tables and is defined as
additional data that can be extracted from information
sources to provide additional context for the interpreta-
tion. For example, metadata can describe the character-
istics and content of the original data, and thus can be
used to organize, retrieve, preserve, and manage extracted
knowledge units. Depending on its structure, purpose, and
provenance, metadata is split into descriptive, structural,
and administrative metadata [80]. Such a definition was
originally used in digital collection [115] and is applicable
to table metadata as well. Each type of metadata in a
table context can provide a deeper understanding of the
table.

Descriptive metadata is used to describe the target
data by providing, e.g., its source, explanatory notes, or
other contextual information. For example, the descrip-
tive metadata of the table “Lattice towers taller than the
Eiffel Tower” depicted in Figure 8(a) can include its prove-
nance (i.e. the URL of the page) and its surrounding text.
Indeed, texts surrounding tables are potential sources of

7

https://en.wikipedia.org/wiki/France#Major%20cities
https://en.wikipedia.org/wiki/Bay_Area_Rapid_Transit
https://en.wikipedia.org/wiki/List_of_best-selling_albums_of_the_21st_century
https://fr.wikipedia.org/wiki/Coupe_du_monde_de_football_1998

Figure 8: Metadata of the Web table “Lattice towers taller than the Eiffel Tower”a: (a) descriptive metadata: its surrounding text, (b)
structural metadata: <td>, <tr> and <th> tags indicate table cells, row ordering, and the presence of headers, (c) administrative metadata:
the page history of the tableb.

ahttps://en.wikipedia.org/wiki/Eiffel Tower
bhttps://en.wikipedia.org/w/index.php?title=Special:Contributions/Andre Engels

contextual information, and thus valuable metadata, since
they often explain a nomenclature or verbalize salient in-
formation. The different relationships between texts and
tables, including titles and captions or even simple co-
occurrences between a table and the surrounding texts,
are useful indicators to guide and improve the annotation
and knowledge extraction processes. However, this table-
text complementarity is little used in the STI domain so
far. Descriptive metadata provides additional information
that enhances the process of approaches such as [15, 34].

Structural metadata describes the structural schema
of composite objects or relationships between objects. For
example, the <td>, <tr>, and <th> tags in the Web
table in Figure 8(b) allow to detect table cells, row order-
ing and the presence of headers. Such structural patterns
could benefit STI approaches such as [97, 105].

Administrative metadata often captures informa-
tion such as the process of creation or data acquisition for
a table. For example, in Figure 8(c), the page history de-
tails how, when, by whom, and for which purpose data
has been produced or altered, allowing to assess the qual-
ity and validity of the table. Additionally, the creation
or modification date of a table can indicate the freshness
of its information, and thus allows to assess the risk of
extracting outdated information.

It should be noted that table metadata can appear
in different forms since tables have different formats and
structures. For example, in some approaches, table head-

ers are available as metadata [24]. Furthermore, if a ta-
ble element consists of a hyperlink (e.g., hyperlinks in in-
foboxes of Wikipedia), this mapping relationship also con-
stitutes metadata. STI systems that leverage metadata as
an input source are identified in Table 1.

3.3. Knowledge Graphs

Knowledge graphs are often associated with linked data
technologies and projects since they focus on interrelations
between concepts and entities [38]. In essence, KGs are se-
mantic networks that formally describe things or entities
of the real world and their relationships [45]. Each entity is
identified by a globally unique URI [12]. Atomic elements
of KGs are triples 〈subject, predicate, object〉. For example,
the population of Paris can be represented by the triple
〈Paris, hasPopulation, 2m〉 where the predicate hasPopula-
tion qualifies the relationship holding between the entity
Paris and the value 2m.

KGs can be categorized into domain-specific (or ver-
tical) KGs, encyclopedic KGs or common-sense KGs de-
pending on their content. A domain-specific KG focuses
on describing a particular field of interest. Such a KG is
expected to present advantages in terms of accuracy and
in-depth domain knowledge coverage. It can effectively
support knowledge reasoning and knowledge retrieval for
specific domain applications [111]. To illustrate, in the
“Crop, Pest, and Diseases” field, domain-specific KGs play

8

https://en.wikipedia.org/wiki/Eiffel_Tower
https://en.wikipedia.org/w/index.php?title=Special:Contributions/Andre_Engels

a substantial role in agriculture [99], greenhouse environ-
ment [114], and economic benefit analysis [100]. The Bio2RDF
project which focuses on Life Sciences [10] is an example
of a domain-specific KG that is largely used.

An encyclopedic KG is generally large, spanning multi-
ple domains, and is often openly and collaboratively edited.
This openness is reflected by the Linked Open Data cloud [16]
which includes the following largest encyclopedic KGs. DB-
pedia [17] is one of the main hubs of the LOD cloud
because of its numerous interlinks with other KGs. It
was created by researchers from the University of Leipzig
and the University of Mannheim in Germany by extract-
ing multilingual structured data from Wikipedia (e.g., in-
foboxes). It is maintained up-to-date thanks to frequent
extracts from Wikipedia. As of early 2016, DBpedia con-
tained more than six million instances and 200 million
facts. Moreover, the DBpedia project provides tools such
as DBpedia Spotlight [63] that are convenient for mapping
mentions contained in unstructured data with KG enti-
ties. Wikidata [103] is a project hosted by the Wikime-
dia Foundation which aims to fuel the infoboxes displayed
on each Wikipedia page. Similarly to Wikipedia, it is col-
laboratively edited by thousands of volunteers. As of early
2021, Wikidata had facts about 90 million entities with la-
bels expressed in more than 350 languages. Wikidata pro-
vides a separate page for each entity, has a unique digital
identification mechanism, and a lineage system that allows
to trace facts to their sources. Freebase [18] was devel-
oped by Metaweb since 2007 until Google acquires it in
2010. Its content comes also from collaborative editing and
structural data automatically imported from Wikipedia
and other websites. At the beginning of 2014, Freebase
had 68 million entities and nearly one billion facts. Free-
base ceased operations in May 2015, and most of its data
was transferred to Wikidata. YAGO (Yet Another Great
Ontology) [96] is a comprehensive knowledge base con-
structed by researchers from the Max Planck Institute
(MPI). While the first versions of YAGO were made out of
information extracted from the Wikipedia infoboxes and
attached to a schema made of the WordNet synsets, the
latest version of YAGO now contains entities extracted
from Wikidata anchored to the Schema.org schema. In
2020, YAGO released its fourth version containing 67 mil-
lion entities and 340 million facts.

KGs constitute essential assets to support the STI pro-
cess. The column KG of Table 1 provides the specific KGs
which have been used in each STI system reviewed in this
paper. Indeed, understanding the content of a table comes
down to identifying the entities mentioned in the table cells
and the relationships between them. Therefore, mapping
table content to KG entities can help identify latent rela-
tionships, and thus understand the table semantics. The
key to map tables and target KGs is to examine the over-
lap of information between them. The wider the overlap
is, the less difficult it is to find the mappings.

It should be noted that each KG may present its own
(dis)advantages to support the STI process. For example,

Wikidata provides rich content and numerous aliases for
each entity to cover a wide set of real-world synonyms.
However, annotating a cell with such an encyclopedic KG
based on a string-similarity mapping may lead to a signif-
icant number of candidates due to the presence of numer-
ous homonyms. This would, in turn, make disambiguation
more challenging. For example, over a hundred entities
have labels or aliases that contain the word “France”. The
Wikidata data model is also complex as it provides qual-
ifiers that may need to be specifically taken into account
during the STI process. On the other hand, DBpedia pro-
vides a reduced number of types curated in the DBpedia
Ontology, which makes the typing of table elements easier
but potentially reduces as well the specificity of the an-
notations. Regarding vertical KGs, the lack of knowledge
from other domains can lead to a reduced system gener-
alization. Additionally, string matching may not be able
to handle the specificities of sophisticated domain-specific
relations, schema, or entities, increasing the interpretation
complexity. For example, in the biology domain, genes and
proteins often share the same labels. To guide the choice
of the supporting KG, it is noteworthy that selecting KGs
with the highest overlap with the dataset’s content will
maximize the system’s performance. Besides, combining
several KGs will maximize the coverage and granularity.

4. Annotation Tasks and Pipeline

The previous section introduced the type of tables to
annotate and the KGs generally used for the annotation.
In this section, we focus on the STI process. We first
present five STI tasks in Section 4.1. Next, we describe a
common pipeline to perform STI tasks in Section 4.2.

4.1. Annotation Tasks

An annotation task can be defined by the table ele-
ments required to be annotated and by the type of candi-
dates (individuals, concepts, or properties of the KG). We
propose to decompose STI into five main tasks: cell-entity
annotation, column-type annotation, columns-property an-
notation [53], topic annotation, and row-to-instance [83]
(illustrated in Figure 9).

Cell-Entity Annotation (CEA) is also known as En-
tity Linking. It aims to annotate a cell with a KG entity.
For example, in Figure 9, a CEA task needs to match the
cell mention “Suisse” with the entity Q165141 if Wikidata
is the target KG. Column-Type Annotation (CTA)
aims to map a column with a KG entity type. The diffi-
culty of the CTA task lies in selecting an adequate type
granularity in a potentially complex type hierarchy struc-
ture. An entity may have multiple types and types repre-
sented in complex hierarchical trees or even cyclic graphs
(e.g., Wikidata type topology). The type selected for a
given column must be representative of the individuals it
contains and carry a maximum of information. If the se-
lected type is too broad (e.g., the second column of the

9

Figure 9: Illustration of five STI tasks for a table describing the UEFA Euro 2008 group A results a.

ahttps://fr.wikipedia.org/wiki/Championnat d%27Europe de football 2008#1er tour - phase de groupes

table in Figure 9 is annotated as a “geographic entity”
(Q27096213) in Wikidata rather than “city of Switzer-
land” (Q1545591)), the annotation will carry little infor-
mation. Conversely, a type that is too specific may not be
representative for all values in a column, leading to an ac-
curacy degradation in downstream tasks. In Figure 9, the
label “city of Switzerland” (Q14770218) would no longer
be compatible with the second column if other groups and
cities that hold UEFA Euro 2008 games such as Vienna
(Q1741) are included in the table. Columns-Property
Annotation (CPA) aims to annotate a column pair of
a relational table with a property. For example, the re-
lationship between the last column and the numeric col-
umn circled in orange in Figure 9 should correspond to the
predicate “number of points/goals/set scored” (P1351) in
Wikidata. Topic annotation aims to annotate the en-
tire table with a concept or an entity from the target KG.
Figure 9 illustrates that the entire table is about the en-
tity “UEFA Euro 2008” (Q241864) in Wikidata. Row-
to-Instance annotates an entire row of a relational table
with a KG entity. In this task, each row is treated as an
entity, which is considered the subject of the row. Row-
to-instance differs from the CEA task as it may be able to
discover more entities leveraging the context of the row, es-
pecially in the case where the subject of the row is hidden
(e.g., on hidden-subject tables). For example, in Figure 9,
the fourth row is represented by (“Switzerland - Turkey,
11 Jun 2008” (Q12012827)) which can not be extracted by
the CEA task.

4.2. Annotation Pipeline

The study of STI approaches in the literature allows
identifying a recurrent pipeline of modules used by the
vast majority of systems. This section introduces a macro-
scopic view of a four-stage STI pipeline: pre-processing

(Section 4.2.1), candidate generation (Section 4.2.2), ta-
ble elements processing (Section 4.2.3), and iterative dis-
ambiguation (Section 4.2.4). It should be noted that the
order of these modules may vary from one approach to an-
other. In addition, some approaches iterate between the
annotation tasks and disambiguation stages to improve the
accuracy of annotations [84, 121].

4.2.1. Pre-Processing

The quality of the STI output is greatly influenced by
the quality of the input data. A pre-analysis of the data
is, therefore, necessary and is often the first step of an
efficient STI system. For example, knowing the orientation
of a relational table can help to identify a column and its
header information to disambiguate the cells.

The goal of the pre-processing module is to quickly and
concisely summarize and analyse an input table to ease the
annotation process by converting it into an interoperable
format. The pre-processing analysis can be decomposed
into the following two tasks. First, format normaliza-
tion allows to transform the original data into a format
acceptable to an STI system. Indeed, table sources are di-
verse, so does their representation in terms of formats (e.g.,
CSV, JSON, HTML), charsets being used (e.g., UTF-8,
Unicode), languages (e.g., English, French), or content
expressions (e.g., missing value). This task also aims to
clean up invalid or erroneous data for better compatibility
among different data sources, e.g., with syntactic correc-
tions by fuzzy matching in [25, 73]. Second, informa-
tional analysis consists of extracting the potential infor-
mation contained in the table as much as possible before
the annotation. The information carried by a table in-
cludes the table types (e.g., relational, matrix) [58, 118], its
orientation [23, 43], primitive types for its columns (resp.
rows), its header positions, if any, and its key column posi-
tion which carries the row’s subject [23]. Such information

10

https://fr.wikipedia.org/wiki/Championnat_d%27Europe_de_football_2008#1er_tour_-_phase_de_groupes

helps the system to understand the scenario and to per-
form different operations in different situations. For ex-
ample, the CTA task is only suitable for relational tables,
and it is related to the table orientation: for horizontal ta-
bles (resp. vertical tables), it will assign a type to columns
(resp. rows).

4.2.2. Candidate Generation

The annotation is usually selected within a candidate
list that depends on the table elements and the correspond-
ing task. For example, the first step of the CEA task is
to generate a list of candidate entities while the first step
of the CTA task is to generate a list of candidate types.
Thus, STI systems automatically generate, manually add,
or filter this candidate list in advance (e.g., an annota-
tion system based on supervised learning should be trained
with pre-set labels, those labels being the candidates of the
annotation process).

String similarity-based lookup is a standard method to
generate candidate entity sets in CEA and row-to-instance
tasks. Specifically, the syntactic similarity is calculated
between cell mentions and entity labels to select the most
relevant entities as candidates. The choice of the matching
algorithm depends on the application scenarios. For exam-
ple, [51] uses Levenshtein-based distances whereas some
public knowledge bases expose a public index allowing
users to extract and generate candidates, e.g., DBpedia
spotlight [63].

In other tasks like CTA (resp. CPA), candidates are
the set of types (resp. predicates) available in the target
KG. The generation of type candidates is sometimes equiv-
alent to the retrieval of the CEA candidates’ types [51, 65].
However, in some learning-based methods [79, 116], type
candidates are manually selected for training.

Some mentions can correspond to a large number of en-
tities, e.g. several thousands of entities whose labels con-
tain the mention “France” can be retrieved from Wikidata.
The number of candidates may affect the efficiency of the
annotation system as calculating and evaluating all possi-
ble candidates may require a large amount of time. Hence,
some STI systems prune the number of candidates [70,
98]. This filtering process can be applied to reduce the
size of the final candidate set by tuning an acceptable
entity-mention similarity threshold. However, one should
be aware that an inadequate threshold risks to filter the
correct entity out. Another way is to sort the impor-
tance of candidates by studying the attributes of the tar-
get ontology. For example, [25, 65] leverage the BM25 [86]
weights from an Elasticsearch index, that can help to select
the candidates with the highest usage rate.

4.2.3. Table Elements Processing

Processing different table elements is the core of an
STI system. Each table element follows a particular rule
according to the table type. Given an input table that
is relational and horizontal, each row describes an entity
and its attributes, while column elements share the same

entity type. Given Tij , the target cell to be annotated
from a horizontal table T , we identify six table elements
that can be leveraged to produce annotations.
Tij indicates the target cell itself. Some studies use

the string similarity as one of the components of candi-
date confidence [51, 65]. For example, in Figure 9, for
searching CEA candidates for the cell “Suisse” in the first
row, we should consider the entities containing the mention
“Suisse” in their label. The correct annotation is Q165141
which has the English label “Swiss national football team”
and the French label “équipe de Suisse de football”.
Ti∗ indicates the row context of the target. Some stud-

ies leverage the matching degree between the attribute val-
ues of the target entity and the information provided in the
table for the CEA task. Most of the annotation tasks con-
sider a single-cell subject relational table scenario. Based
on this assumption, it is reasonable to make this compar-
ison for calculating the confidence of the candidate. For
example, in Figure 9, knowing the date (“11 juin”) and
city (“Bâle”) can help to annotate the third row with the
right football game (Q12012827) based on its neighbouring
nodes in the KG.
T∗j indicates the column context of the target. For a

horizontal relational table, the information carried by cells
in the same column of the table is somewhat similar (e.g.,
cells referring to the same concept or the same unit). For
example, in Figure 9, the cells in the second column are
cities. Having this information could help to choose the
right candidate between the city of “Bâle” (Q78) and the
family name “Bâle”(Q107983752).
T∗∗ indicates intra-columns relationships from the tar-

get table. Intra-column relationships provide a global rep-
resentation of a table. For example, in Figure 7(c), know-
ing the relation between the column “Album” and the col-
umn “Artist/s” could help to filter out people who did not
publish any music album.
T0∗ indicates the header of the target table. The table

header often directly explains the contents of the column.
Making full use of the information from the table header
can help to find the column type or properties more effi-
ciently. For example, in Figure 8(a), the headers “Year”,
“Country”, and “Town” directly denote the concepts of
the columns.
Tout indicates contextual elements encompassing the

table. High-quality metadata can help the interpretation
of the table. For example, the table’s title can potentially
determine the domain of the table content, or a hyperlink
in a table cell can reveal the identity of the entity. In ad-
dition, the text surrounding the table is usually correlated
with the content of the table. Leveraging this correlation is
used by some STI approaches [34]. Another way to enrich
the information used for the disambiguation of the target
table relies on inter-table relationships [104].

From the elements mentioned above, the initial annota-
tion step is based on row interpretation, column interpre-
tation, entire table interpretation, or metadata interpreta-
tion. In row interpretation, each row in the table describes

11

an entity’s attributes. Column interpretation uses the en-
tities in the same column of the relational table with high
mutual similarity. This feature can help to constrain the
range of candidates for a table cell. Entire table interpre-
tation considers all cells from the table as the context for
the disambiguation and is usually performed using deep
learning models such as [34, 93].

4.2.4. Iterative Disambiguation

When an STI system jointly undertakes multiple tasks
among the five tasks defined in Section 4.1, one task can
provide additional useful information for solving the other
tasks. For example, when knowing the type annotation
of a column (CTA), candidate entities for its inner cells
(CEA) that do not belong to the CTA type are less likely
to be correct candidates [25]. We call this process itera-
tive disambiguation. This iterative technique is frequently
used in heuristic-based approaches (Section 5.1.2) in which
a pipeline including specific ordered tasks and being exe-
cuted once or in a loop is explicitly defined in two ways:
(1) predefinition of a pipeline, e.g., [25] performing sequen-
tially CEA, CPA, CTA, CEA disambiguation with CPA or
(2) repeat a set of tasks multiple times and stop when it
converges to a stable result [84, 121].

5. Semantic Table Interpretation Approaches

In this section, we review the notable approaches from
the literature. Among the five tasks introduced in the pre-
vious section, the literature mostly focuses on CTA, CEA,
and CPA. We propose to classify STI systems according to
three representative paradigms of their intrinsic method-
ology: (1) heuristic methods (Section 5.1) which mostly
rely on heuristic techniques such as entity matching, TF-
IDF, majority voting, or simple probabilistic frameworks
to predict a target; (2) feature-engineering based methods
(Section 5.2) which require a feature engineering process
to extract statistical and lexical features from the table
that are then used to train Machine Learning models ;
(3) Deep Learning based methods (Section 5.3) that lever-
age a large number of tables and neural networks to learn
deep and contextualised representations of elements of the
table, requiring little feature engineering. More details
on this classification are shown in Table 1 including rep-
resentative algorithms, target tasks, table elements used,
reference KG, and year of publication. Finally, we discuss
these methods from different perspectives: the pros/cons
of heuristic-based methods versus Machine Learning based
methods, the importance of table elements and the KG
structure for improving the accuracy, and the trade-off be-
tween efficiency and accuracy (Section 5.4).

5.1. Heuristic Approaches

The heuristic class gathers diverse approaches which
are often considered as baseline STI approaches. The core
of each system is algorithmically straightforward and does

not require much effort in feature engineering or learn-
ing. Indeed, the STI tasks are carried out using heuristic
techniques such as string similarity measures [65, 76, 105],
majority voting [123], TF-IDF [76, 98] or probabilistic
frameworks [70]. The context of the table, including the
header, the title, and the neighbouring cells [51, 105] is also
taken into account but not thoroughly. We further iden-
tify two subclasses of heuristic approaches: lookup based
approaches (Section 5.1.1) and iterative approaches (Sec-
tion 5.1.2).

5.1.1. Lookup Based Approaches

Approaches from this paradigm work with an initial
candidate entity set determined by a lookup service. Af-
ter generating candidates through lookup, these methods
score the candidates using different metrics on table ele-
ments (e.g., cells, type of columns, etc.).

Venetis et al. [102] introduce a model for extracting
the column type and the relationships between the key
column and other columns. To increase knowledge cov-
erage and avoid issues related to KG incompleteness, the
authors present an isA database to carry out the CTA
and a relation database to carry out the CPA. The isA
database is built by using concept extraction techniques
on 100 million English documents that contain the pat-
tern C[such as|including]e[and|, |.].. They generate the
relation database with the help of the TextRunner open
extraction system [9]. The authors demonstrated that a
hybrid model leveraging a Bayes rule and majority voting
has the best performance. The Bayes rule measures the
global relevance between cell values and column type la-
bels in tables. The authors conclude that using a target
knowledge base (YAGO) leads to higher precision. How-
ever, leveraging the isA database can significantly improve
the coverage and allow to obtain more meaningful labels
for complex or non-explicit table cells.

Wang et al. [105] focus on the table headers to bet-
ter identify the concept associated with a given column.
The approach uses a header detection module that lever-
ages Probase [110] querying and rule-based filtering. In
the absence of headers, a custom concept is employed
with Probase queries by measuring the type occurrence of
the column cells. The table interpretation is executed by
studying the cells-header compatibility and entity-values
compatibility. Through experiments on a search engine,
the approach demonstrates that headers can help under-
stand the columns of a table.

Deng et al. [33] focus on the production of top-k
candidates for CTA. The authors first build a Directed
Acyclic Graph mapping the entity labels from YAGO and
Freebase within a type hierarchy tree. Then, they lever-
age a distributed system to make the process scalable and
efficient without losing precision and accuracy for annota-
tions. Specifically, a two-stage MapReduce system is built.
(1) Multiple signatures for each cell mention and entity la-
bel are generated to support the cell-label fuzzy matching.
For example, “Shar” is one of the signatures for the cell

12

Table 1: STI systems are classified into three families. We only consider the annotation tasks declared by the authors and when they have
related evaluations. “R2I” indicates the task “Row-to-instance”; “TA” indicates the task “Topic annotation”; “Ti∗” indicates that, when
labeling a cell, information from the same row is used; “T∗j” indicates that the approach leverages information from the target column
(CEA, CTA) or columns (CPA); “T0∗” means that the approach has a special treatment on the headers of the table; “T∗∗” indicates that
the approach considers information from all tables elements, including inter-columns influence and training the model with the whole table;
“Tout” indicates that the approach not only uses the target table itself for annotation but also considers metadata, including other tables
associated with the target table and the text near the original target table.

Approches Annotation Tasks Table Elements
KG Data Source

Published
YearClass Algorithm CEA CTA CPA R2I TA Ti∗ T∗j T0∗ T∗∗ Tout

Heuristic

Lookup
based

Venetis et al. [102]
√ √ √

Custom Custom Web Tables 2011
Wang et al. [105]

√ √ √ √
Probase Custom Wikipedia Tables 2012

Deng et al. [33]
√ √

FreeBase, YAGO Custom Wikipedia Tables 2013
Sekhavat et al. [88]

√ √
DBpedia Custom Web Tables 2014

TabEL [14]
√ √ √

YAGO Limaye 2015
ADOG [76]

√ √ √ √ √
DBpedia SemTab 2019 2019

Tabularisi [98]
√ √ √ √

DBpedia T2D, VizNet 2019

C2 [56]
√ √ √ √

DBpedia, Wikidata
Limaye, ISWC2017, SemTab 2019,

T2D, Semantification, Custom Data
2020

Magic [91]
√ √ √ √ √

DBpedia, Wikidata SemTab 2021 2021
Alobaid et al. [5]

√ √
DBpedia SemTab 2021, T2D 2022

Iterative

Zwicklbauer et al. [123]
√ √

DBpedia Custom Wikipedia Tables 2013
T2K [84]

√ √ √ √ √
DBpedia T2D 2015

TableMiner+ [121]
√ √ √ √ √ √ √

Freebase Limaye, IMDB, MusicBrainz 2017
LOD4ALL [65]

√ √ √ √ √
DBpedia SemTab 2019 2019

CSV2KG [92]
√ √ √ √ √ √

DBpedia SemTab 2019 2019
MTab [70, 73, 74]

√ √ √ √ √ √
DBpedia, Wikidata SemTab 2019-2021 2019

LinkingPark [25]
√ √ √ √ √

Wikidata SemTab 2020 2019
DAGOBAH SL [49, 50, 51]

√ √ √ √ √
DBpedia,Wikidata SemTab 2019-2022 2019

MantisTable [27, 26]
√ √ √ √ √ √

DBpedia, Wikidata SemTab 2019-2021 2019
JenTab [1, 2, 3]

√ √ √ √ √
DBpedia, Wikidata SemTab 2020-2021 2020

Feature
engineering

based

Limaye et al. [60]
√ √ √ √ √ √

YAGO Limaye 2010
Mulwad et al. [67, 66]

√ √ √ √ √ √
Wikitology Limaye 2010

SemanticTyper [79]
√ √

DBpedia Museum 2015

DSL [64]
√ √

DBpedia
City, Museum,

Weather, Custom Soccer
2016

Neumaier et al. [69]
√ √

DBpedia Government Data Portal 2016
NUMER [55]

√ √ √
DBpedia NumDB 2018

Deep
learning
based

KG
modelling

Vasilis et al. [37]
√ √ √

Wikidata Limaye, T2D, Wikipedia 2017
Biswas et al. [15]

√ √
DBpedia Custom Wikipedia inforbox 2018

DAGOBAH Embeddings [23]
√ √ √ √ √

DBpedia, Wikidata SemTab 2019 2019
Radar Station [61]

√ √
Wikidata Limaye, T2Dv2, SemTab 2020 2022

Table
modelling

Sherlock [48]
√ √

DBpedia T2D, VizNet 2019
Sato [116]

√ √ √
DBpedia VizNet 2019

ColNet [24]
√ √ √

DBpedia Limaye, T2Dv2 2019
Guo et al. [42]

√ √ √
DBpedia T2Dv2 2020

Zhang et al. [119]
√ √ √ √

DBpedia T2Dv2 2020
TURL [34]

√ √ √ √ √ √ √ √
DBpedia WikiGS, WikiTable, T2D 2020

TCN [104]
√ √ √ √ √ √

- Custom Web Tables, WikiTable [34] 2021
DUDUO [93]

√ √ √ √ √
- WikiTable, VizNet 2021

Singh et al. [90]
√ √ √ √

DBpedia T2Dv2 2021
Zhou et al [122]

√ √ √
DBpedia Custom Wikipedia Tables 2021

mention “Shark Night 3D”. All candidate types according
to the Directed Acyclic Graph are then aggregated with
subordinative entities of each column. (2) The occurrence
of each type is counted in order to select the top candidate
type. To accelerate the computation, candidate types are
aggregated into disjoint groups.

Sekhavat et al. [88] leverage NELL [95], a Web text
corpus, and natural language patterns (PATTY [68]) to ex-
tract relations (CPA). The target KG is YAGO, in which
only 23 relations are considered as possible annotation for
a pair of columns. These are also relations extracted by
PATTY from Wikipedia pages. Each relation r is repre-
sented by a set of textual patterns p1, ..., pk provided by
PATTY. Note that a pattern pi can be associated with
more than one relation. Semantic mentions in a pair of
columns are linked to KG entities (YAGO) with exact
matching. Two columns are connected via a relation r
if each pair of entities (e1, e2) in the same row belongs to
this relation. To determine whether (e1, r, e2) is a valid
triple, textual contexts related to both e1, e2 are extracted
from NELL and are mapped to a list of patterns p1, ..., pk
in PATTY. The problem then comes down to comput-

ing the posterior probability of r given evidences p1, ..., pk:
Pr(r|p1, ..., pk). A Bayesian framework is used to compute
this posterior.

TabEL [14] aims to provide an extensible framework.
After a pre-processing, the approach first generates can-
didates for each cell using YAGO and ranks them ac-
cording to their string similarity with the cell and their
popularity. Every candidate participates in the calcula-
tion of the annotation. In the joint inference module, an
undirected probabilistic graphical model is extracted to
capture entity-context (elements from the same table) co-
occurrence. These co-occurrence factors are updated with
the connectivity between candidates, resulting in the final
CEA annotations.

ADOG [76] considers scores combined with string sim-
ilarities, frequencies of properties, and the normalized Elas-
ticsearch score for each match from DBpedia for the CEA
task. The system weights these scores with the IDF score
of types. To be able to compute the Levenshtein distance
and TF-IDF, ADOG uses ArangoDB2 to load DBpedia

2https://www.arangodb.com/

13

https://www.arangodb.com/

and index its components. The frequency of classes and
properties is then used to obtain the CTA and CPA re-
sults.

Tabularisi [98] adapts TF-IDF statistics to rank the
CEA candidates in a given column. A candidate entity
is represented by a binary feature vector in which each
feature is an indicator (1 if present, else 0) of a prop-
erty used to describe the entity (e.g., instanceOf). Dif-
ferent features have different expressiveness. They are
thus weighted using TF-IDF. Specifically, the “Term Fre-
quency” of a feature is the number of cells whose first
candidate entity has that feature, and the “Document Fre-
quency” is the total number of occurrences of that feature
in all candidate entities in all cells. The score of a candi-
date entity is a weighted combination of its TF-IDF score,
Levenshtein similarity and word similarity. The weights
are either set or learned using a two-layer neural network.
The CTA is performed by a top-down brute-force search
in the KG class hierarchy tree. The system also sends
the most frequent relation among columns with SPARQL
queries of cell mention pairs.

C2 [56] aims to handle the CTA task with the help
of nine datasets. C2 classifies columns into string entity
columns, number columns, and mix-type columns (e.g.,
emails, dates). The system relies on decision trees, which
leverage the pattern of the cell mentions or numerical inter-
val for splitting the branches, to annotate numeric columns
and mix-type columns. For entity columns, voting from
the concepts extracted from DBpedia or Wikidata for each
entity cell is used. C2 also considers the type co-occurrence
within a table to adjust the annotation.

Magic [91] adopts the approach of generating com-
parison matrices (called INK embeddings) to speed up the
computational efficiency. INK embeddings are represen-
tations of the attributes and values of an entity or the
table context of a cell mention. The complete comparison
matrix is generated by fusing multiple candidates. The
system outputs CEA annotations by measuring the com-
patibility between the INK embeddings of the KG and the
table. The INK embeddings of entities from the same col-
umn are collected to carry out CPA and CTA. For the
annotation, the system focuses on the key column: they
do the lookup (via public endpoints) for each cell in the
key column, then use its neighbourhood to find the can-
didates for the neighbouring cells in the same row (they
do not perform the lookup on the whole table due to limi-
tations of public API usage). Misspellings might however
be a challenge for Magic and it cannot detect synonyms of
attributes. However, INK embeddings improve computa-
tional efficiency and provide a way to implement column
wised similarity.

Alobaid et al. [5] handles CTA with a strong focus
on the trade-off between type coverage and type speci-
ficity after generating type candidates via entities-wised
queries on cell mentions. The type coverage is built on
a weighted type hierarchy index inside a column, and the
type specificity is associated with a distance to the root.

The authors test different balance settings between these
two factors using the T2D and SemTab datasets.

5.1.2. Iterative Approaches

Iterative approaches are usually built on top of a lookup
system, with an additional multi-task disambiguation step
for re-ranking candidate entities. The iterative disam-
biguation techniques, as described in Section 4.2.4, play
a significant role in the improvement of the model perfor-
mance.

Zwicklbauer et al. [123] pioneered iterative majority
vote strategies. The idea is based on the majority voting of
annotation candidates of the cells for the CTA task. The
system generates these cell candidates using a search-based
disambiguation method [124]. Since majority voting plays
an essential role in the system, this approach is sensitive
to the number of table rows. The extreme case is that the
annotation precision can be less than 0.1 with single row
tables.

T2K [84] annotates Web tables by mapping their columns
to DBpedia properties, and their rows to DBpedia entities,
associating the whole table with a DBpedia class. A key
column’s position for each table is firstly detected by a
preprocessing step. T2K transforms row-to-instance and
table topic tasks into CEA and CTA on the key column.
The initial entity mapping is derived from a lexicograph-
ical comparison between the labels used in the table and
those of the entities described in DBpedia with Jaccard,
Levenshtein, and deviation similarities. An aggregation of
these similarities is then used to choose the initial CTA an-
notation. The system adopts an iterative process between
a CEA matching module and a CPA matching until the
output is stable. The system achieves promising results on
CEA and topic annotation.

TableMiner [120] and the following work TableM-
iner+ [121], first use a lexical expression to extract a prim-
itive type for each column. Similarly to T2K, TableMiner
sees row-to-instance and table topic as CEA and CTA on
the subject column. The system identifies a subject col-
umn for each table considering evidence collected from the
original Web pages. During the annotation phase, the au-
thors iteratively label records corresponding to the sub-
ject column and their attribute columns using information
from the HTML context of the tables to create a richer
representation of cells and columns. TableMiner+ uses
partial matching during the CTA annotation. The authors
claim that partial matching is efficient and that eight rows
are enough for supporting the annotation. A loop is used
between CEA annotation and CTA annotation until the
results remain stable. This system leverages the Freebase
KG and was evaluated on the IMDB and MusicBrainz spe-
cific datasets, as well as on Limaye.

LOD4ALL [65] is initialized by building an RDF store
database and a score DB database containing candidate
types with scores reflecting the level of specificity gen-
erated by Okapi BM25 [86]. The system uses a similar
approach as [123] for the candidate generation module,

14

which uses a combination of Elasticsearchs score and the
SimStrings score to select the top 100 candidates. The
CTA leverages Okapi BM25 type scores and the type cov-
erage on the table. The CEA and CPA are calculated
after CTA type filtering. The system is targeting DBpe-
dia as ontology and has participated in the SemTab 2019
challenge. A similar pipeline is used by CSV2KG [92].
However, CSV2KG considers applying a threshold on the
normalized entropy of the two highest type counts from
the annotated candidates parent types list to decide the
level of granularity of the CTA.

MTab [70] employs four different lookup services. This
approach analyses signals from server’s lookup ranking,
header context analyses, SpaCy type prediction3, Duck-
ling type prediction4 and value similarities. Each sig-
nal is transformed into a normalized probability score.
The system aggregates selected probabilities with learn-
able weights according to the associated task. In addi-
tion, the authors also used EmbNum [72] to help to pro-
duce annotations on numerical columns. Column types
and column pair relations are computed based on entity
scores. Entities, types and relations are iteratively cal-
culated two times to disambiguate CEA, CTA, and CPA
annotations with inter-tasks relatedness. In a more recent
work, MTab4Wikidata [73, 74] adapts fuzzy matching and
“two cells search” to enhance the support of misspelling
and ambiguities in table content. The system won the first
prize in both SemTab 2019 and SemTab 2020 challenges.

LinkingPark [25] leverages the Wikidata MediaWiki
API to generate cell candidate entity lists. It also adapts a
fine-grained Elasticsearch index to rank those candidates.
This system firstly adopts a cascaded pipeline to generate
candidate entities. Then the system disambiguates each
cell through an iterative coarse-to-fine algorithm by con-
sidering the CPA annotation results. The system finally
generates the CTA annotations from the disambiguated
cell annotations. The authors also claim that Wikidata’s
type ontology is noisy which makes it difficult to assign
types during CTA annotation.

DAGOBAH SL [49, 50, 51] calculates a score for each
cell entity. This score combines the Levenstein similarity
and the context similarity between the entity’s neighbour-
ing nodes and the row context of the target cell. The
authors collect triples containing cell candidates between
the two columns and calculate the sum of the weights
from the corresponding cell candidates for each relation.
The output of CPA is the relationship with the highest
sum. The system then leverages the CPA results to per-
form CEA disambiguation. As for CTA, in addition to the
majority vote based on CEA, DAGOBAH SL also lever-
ages the distance to the root concept and the ranking of
each Wikidata entity’s class to select the most accurate
type. In more recent works, DAGOBAH SL [50] enhances
the system with CTA disambiguation. The entity context

3https://spacy.io/
4https://github.com/facebook/duckling

made with multiple-hop neighbouring entities is also taken
into account in calculating the scores. The system won
the first prize in accuracy in the SemTab 2021 challenge.
DAGOBAH SL [49] also uses language models to extract
more meaning from the table headers and largely expands
its aliases table using external sources for improving the
lookup coverage. The system won again the first prize in
accuracy in SemTab 2022 challenge.

MantisTable [27, 28] pipeline starts with classifying
each column into three types: Named Entity column, Lit-
eral column, and Subject column. The candidate genera-
tion of this approach is based on SPARQL queries which
extract all candidates containing the cell mentions. Then,
the system handles the CEA using row-wise compatibil-
ity analysis and CPA using majority voting. For the CTA
task, the authors list all candidate types in addition to
their number of occurrences in the table (row coverage).
After filtering with a threshold, the rest of the type candi-
dates are transformed into a graph according to the ontol-
ogy hierarchy. Type scores are then updated with the dis-
tance to the root. In the end, the highest score represents
the most accurate and specific annotation. The recent ver-
sion of MantisTable SE [26] optimizes the system by up-
dating the scoring function, accessing the LamAPI5 API
(instead of using a SPARQL endpoint) and adding a final
disambiguation step. MantisTable also supports row-to-
instance by applying CEA on a subject column detected
in preprocessing.

JenTab [1, 2, 3] starts from analysing the row con-
text and column context of a table. This system wraps
each computational unit into independent modules so that
they can be recalled easily and repeatedly. Those modules
include row information processing, disambiguation using
CTA output, etc. The system leverages different module
combinations for supporting CEA, CTA and CPA tasks.
The evaluation shows that JenTab has an excellent perfor-
mance on synthetic datasets. The authors also investigate
the implications of considering multi-hop links in type hi-
erarchy relations. The result shows that considering two
hops has a small probability of improvement, while multi
hops lead to a significant decrease of the accuracy.

5.2. Feature Engineering based Approaches

This family of methods extracts statistical and lexical
features (such as distribution of numerical values, occur-
rence of cell mentions, textual similarity, etc.) from the ta-
ble rows and columns and uses them with machine learning
models. Typical algorithms used for STI include SVM [67],
Random Forest [64] and K-Nearest Neighbor [69] for ex-
ample. A labelled dataset is required for the training. The
amount and the quality of training data, and consequently
the quality of input features, have a significant impact on
the model performance, as discussed in [64]. In addition,
we observe that ML methods target the CTA task more

5https://bitbucket.org/disco-unimib/lamapi

15

https://spacy.io/
https://github.com/facebook/duckling
https://bitbucket.org/disco-unimib/lamapi

than other tasks, as columns can provide more statistical
features than other annotation targets.

Limaye et al. [60] introduce one of the first works
on STI. The approach computes the TF-IDF cosine simi-
larity between a cell mention and an entity label and the
compatibility between the cell type and the column type
to execute the CEA task. CTA task depends on TF-IDF
cosine similarity between column header and each entity’s
type label. The CPA annotation depends on the compat-
ibility between the relation and column pairs. All these
features are weighted through a machine learning frame-
work.

Mulwad et al. [67] leverage majority voting on the
type of cells candidates for the CTA annotation. The
PageRank algorithm weights each cell’s type from the on-
tology during the CTA. For CEA annotation, the system
collects entity features from entity PageRank, string simi-
larities, entity index score and entity page length to gener-
ate a vector representation of each entity. An SVM classi-
fier is then built upon these features to make predictions.
This system supports both DBpedia and Wikitology.

SemanticTyper [79] processes each column of the ta-
ble independently for CTA. The system first distinguishes
between columns of numbers and columns of strings by
voting on the types of cells in each column given a prede-
fined threshold. Strings columns are trained upon cosine
similarities on TF-IDF, considering a column as a docu-
ment. To annotate numerical columns, the authors use
a variety of distribution representation methods. In both
cases, they adapt the training data that consist of a set
of semantic labels associated with samples of data values.
The prediction aims to find the most similar candidate
by comparing the distance between the query column and
each sample set in the training data corresponding to a
distinct semantic label. The chosen distance metric de-
pends on the column type. The training dataset was ex-
tracted from vertical domain datasets such as museums
and cities, and the authors associate columns from these
datasets with DBpedia classes. The main limitation of
this work resides in not taking into account relationships
between columns.

DSL [64] build their approach for CTA on datasets
from four different domains: city, weather, museum, and
soccer. Labels are partially manually added to these datasets.
DSL leverages features including string similarity and num-
ber distribution between chosen labelled datasets and the
rest of the data during the prediction. The difference with
SemanticTyper is that the distribution is also available
for string columns in this approach. The system learns
the weights between these features through two supervised
learning algorithms: logistic regression and random for-
est. The evaluation shows that logistic regression achieves
better results. The authors claim that the incorrect pre-
dictions come from the top decomposition point of the
decision tree.

Neumaier et al. [69] focus on CTA labelling for nu-
merical columns. Their work is not limited to predicting a

unique label but rather expands the scope of labelling to
its surrounding information. For example, instead of la-
belling “height”, this system will label it as “the height of
an athlete playing basketball in the NBA”. To do so, the
authors constructed a background KG based on DBpedia.
This background knowledge base is extracted as a hier-
archical structure divided into multiple multi-level groups
to provide context. Each node in the hierarchy represents
a type or a predicate and provides statistical information
(maximum, minimum, or distribution) of the relative num-
ber set as features. The authors use these features and
KNN to make predictions. The authors also explore the
system’s performance at different hierarchy levels in the
background KG built on DBpedia and Open Data. They
pointed out that DBpedia has still limitations in terms of
coverage and freshness compared with other open datasets.
For example, the Austrian Open Data Portal has tables
generated by weather stations every 15 minutes. However,
DBpedia typically has numeric values only for “current”
or “latest”. Another limitation of this work is that the
size of numerical columns and the popularity of numerical
KG properties may influence the accuracy. Hence, NU-
MER [55] proposes to link subject cells with KG entities
first, and then only extract the linked properties for en-
abling the column-wise number distribution study.

5.3. Deep Learning based Approaches

Deep Learning has achieved many successes in various
domains thanks to the availability of huge amounts of data
and powerful computing resources. It has attracted more
and more attention from the STI community over the past
few years. We identify two main directions for the appli-
cation of deep learning in the STI domain: KG modelling
(Section 5.3.1) and table modelling (Section 5.3.2).

5.3.1. KG Modelling

This direction focuses on the entity level in which mod-
els learn embedding representations for entities of a table
cell instead of the cell itself. Specifically, KG embedding
techniques (e.g., TransE [20], TransH [107]) are used to
encode the entities and their relationships into a vector
space. STI models rely on the intuition that the entities
in the same column should exhibit semantic similarities.
Hence, they should be close to each other in the embedding
space w.r.t. cosine similarity distance [37] or Euclidean
distance [23].

Vasilis et al. [37] provide different methods. One of
the proposed systems assumes that the correct CEA can-
didates in a column should be semantically close. From
this assumption, a weighted correlation subgraph in which
each node represents a CEA candidate is built. The edges
are weighted by the cosine similarity between two related
nodes. The best candidates are the ones whose accumu-
lated weights over all incoming and outcoming edges are
the highest. In addition, a hybrid system that combines

16

the correlation subgraph method and an ontology match-
ing system is also introduced and achieves a significant
improvement in the end.

Biswas et al. [15] focus on topic annotation for Wikipedia
infoboxes by leveraging metadata from the Wikipedia page.
The annotation ignores the infobox content since the in-
fobox information is often incomplete, incorrect and miss-
ing. Wikipedia page section headers and abstract are ex-
tracted as the source of information and are featured by
Word2Vec embeddings for each word. Note that named
entities present in the abstract are also transformed into
RDF2Vec [81] vectors with DBpedia pre-trained embed-
dings. The global representation vector (called document
embeddings) of an infobox is the concatenation of Word2vec
and RDF2vec vectors. Two classifiers (Random Forest and
CNN) are trained on top of the document embeddings on
150,000 tables with 30 preset types. The evaluation shows
that CNN outperforms the Random Forest classifier.

DAGOBAH Embeddings [23] hypothesizes that all
entities in the same column of the table should be close to
each other in the embedding vector space. Consequently,
the correct candidates are assumed to belong to a few clus-
ters. The K-means clustering is performed using TransE’s
pre-trained embedding to cluster the candidate entities.
The good clusters with high coverage are retained by a
weighted voting strategy. Both CEA and CTA are selected
from the chosen clusters. Experimental results prove that
this approach has successfully improved the accuracy of
the CTA task. However, the system is also misled by in-
correct candidates in the selected clusters during the CEA
task.

Radar Station [61] went a step further in proposing
a hybrid system that aims to add a semantic disambigua-
tion step after a previously identified CEA. Radar Sta-
tion takes into account the entire column as context and
uses graph embeddings to capture latent relationships be-
tween entities to improve their disambiguation. RadarSta-
tion has been evaluated on top of different heuristics-based
systems (DAGOBAH SL, BBW, MTab) and have consis-
tently demonstrated an accuracy improvement of around
3%. Furthermore, the system shows empirical evidences
that among the various graph embeddings families, the
ones relying on fine-tuned translation distance have supe-
rior performance compared to other models.

5.3.2. Table Modelling

This direction deals directly with the textual content of
the table as well as intra-table and inter-table interactions.
The contextualized representation of basic elements of the
table (i.e. cell, column) is learned by using deep neural
networks [24, 48] or language models like BERT [34, 93,
122].

Sherlock [48] learns to perform the CTA task using
1588 features extracted from a single column of a given
relational table. The features are divided into four cat-
egories: character-wise statistics (e.g., frequency of the

character “c”), column statistics (e.g., mean, std of nu-
merical values), word embedding, and paragraph embed-
ding. Except for column statistics features, other features
are compressed into a fixed-size embedding using a subnet-
work. A two-fully connected layer network is trained on
both the embedding features and column statistics features
to predict a column type annotation among 75 types inher-
ited from the T2Dv2 dataset. The evaluation shows good
results on various column types, including Dates and In-
dustry. However, it is less sensitive to the purely numerical
values or values appearing in multiple classes. Facing the
potential missing information in single-column annotation,
Sato [116] extends Sherlock by considering the whole table
context. The table topic embeddings with LDA features
modelled by an additional subnetwork and the column-
pairs-wise dependency modelled by a CRF layer are also
studied.

ColNet [24] predicts the column type (CTA) using
only intra-column contextual information. Specifically, all
the cell mentions of a column are split and concatenated
into a single word sequence. This word sequence is con-
verted into an embedding vector using word embeddings
models like word2vec. This embedding is later input into
a CNN model. It is worth noting that ColNet predicts the
type of each column independently, and thus ignores the
inter-column contextual information. To generate a train-
ing dataset, ColNet makes use of a KG to collect candidate
classes given the cells of the column. For each candidate
class c, N different sets of h entities belonging to c in
KG are retrieved and the associated word embeddings are
stacked into a matrix M. This forms N training sam-
ples {M, c} for class c. To alleviate the computational
complexity, the candidate classes that appear rarely are
not modelled and h rows of the column are randomly se-
lected to predict a type annotation. The type prediction
of ColNet is then refined by the matching entities of in-
ner cells through majority voting. Similar work includes
Guo et al. [42] where the authors also introduce the use
of BiGRU-Attention rather than CNN and support multi-
column annotation using linear-CRF (linear-chain condi-
tional random field) on the entire network table and an
undirected graph model that directly models the condi-
tional probability.

Zhang et al. [119] address the table-to-KG match-
ing including CEA and CPA tasks. Additionally, in the
pipeline, with the help of a table-to-KG matching step,
their tool performs a novel entity discovery task. A clas-
sification model is based on syntactic similarity (e.g., edit
distance, Jaccard distance) and semantic similarity (deep
semantic matching method DRMM [40]) between a table
mention and corresponding candidate entities to determine
whether the mention is linkable. If yes, at most one entity
is predicted for this mention. Another classifier is then
built on the cell annotations (CEA), exploiting column-
wised features such as naive features (e.g., length of the
header), label similarity between header and properties of
cell entities, value similarity between literal values (e.g.,

17

numerical, time) in the table and literal values of cell en-
tities for the column property matching (CPA).

TURL [34] pioneers the application of pre-trained lan-
guage models such as BERT in the STI domain. It pro-
vides a universal contextualized representation for each
table element (i.e. caption, header, content cells) which
can be fine-tuned and applied in various downstream tasks
such as CEA, CTA, CPA, or table augmentation. The
table augmentation task mainly involves enriching the se-
mantics of the table by extending it with new columns
(attributes). The model employs a Transformer-based en-
coder [101] to capture the information from table elements.
To this goal, the input table is first serialized into a se-
quence of caption tokens, title tokens, header tokens, and
row-by-row cells. A cell consists of its content (mention)
and a candidate entity representing it in a KG. The se-
quence of tokens is then converted into embeddings us-
ing word embeddings for textual tokens and KG embed-
dings for entity tokens. To reduce the redundancy in
the fully-connected attention learning and better draw the
inter-column and intra-column, inter-row and intra-row,
column-row interaction, the conventional attention layer is
masked by a so-called visibility matrix which allows only
a portion of table elements to participate in the modelling
of a specific element. For example, cells in the same row or
the same column can interact with each other. Apart from
the BERT’s Masked Language Model objective, TURL in-
troduces an additional Masked Entity Recovery objective
to reinforce the learning of factual knowledge embedded
in the table and represented by KG entities. The model is
trained on 570K relational Wikipedia tables.

Singh et al. [90] introduces a method based on BERT
for relation extraction from tables (CPA). Only two-column
tables are studied in this work. The table is tokenized
and transformed into linearized rows and linearized col-
umn headers that are passed through a pre-trained BERT
encoder to obtain two vector representations for table con-
tent and table header. A fully-connected layer takes as
input these two vector representations and predicts scores
over all candidate relations in the two-column table. The
model is trained on synthetic tables generated automati-
cally from a KG. However, synthetic tables lack metadata
such as column headers and captions. According to the
authors, such metadata is important for the relation ex-
traction task. Hence, they propose a novel method which
generates synthetic tables associated with metadata (con-
text of table contents, meaningful column headers).

TCN [104] not only exploits intra-table contextual in-
formation but also inter-table contextual information for
the two tasks CTA and CPA. According to the authors, the
global context of a table can be complemented by discover-
ing its implicit connections with other semantically related
tables. Such inter-table connections can come from over-
lapping cell contents, consistent schemas or similar table
topics between two tables. The embedding representations
of a specific table cell and the table topic are jointly learned
leveraging intra-table contexts (i.e. other cells in the same

column or the same row, the table topic) as well as inter-
table contexts (i.e. the cells sharing the same value, the
columns with a similar header and the topic from other
related tables). All of these contexts are fused into the
embedding through the attention mechanism. As in DO-
DUO model [93], the CTA and CPA tasks are trained in
a supervised manner on two specific objective functions
dedicated to column type prediction and column pair re-
lation prediction, respectively. In addition, in the case
where a large annotated training dataset is not available,
TCN switches to transfer learning in which the ultimate
cell embedding is fined-tuned with a BERT-like unsuper-
vised pre-training. The evaluation shows that the inter-
table contextual information contributes positively to the
model’s performance. However, the utilisation of inter-
table context remains challenging since it requires prior
knowledge about tables’ schemas which are generally di-
verse.

DODUO [93] learns to jointly annotate the column
type and column pair relation through multi-task learning.
Similarly to other Transformer-based models, the key idea
of DODUO is to incorporate table contexts (intra-column
and inter-column contexts) into the prediction of a single
column type or a single column pair relation using a table-
wise attention mechanism. The model serializes the input
table column by column into a sequence of tokens in which
each token represents either a column header or a column
cell. A special [CLS] token is appended at the beginning
of each column to distinguish two different columns. This
token is also considered as the embedding representation
of the column itself. During the inference phase, two dif-
ferent output layers perform two different tasks: one takes
a single column representation (i.e. the hidden vector of
the [CLS] token) as input and produces a semantic type
for this column accordingly, one takes a pair of column
representations and predicts a relation between them.

Zhou et al. [122] focus on the column type detection
(CTA) task. This work leverages the Star-Transformer
model [41] to learn a vector representation for each col-
umn taking the inter-column interactions into account.
The input embedding of a column is initialized as a con-
catenation of semantic features which are word embed-
dings averaged over cell contents and statistical features
which are adopted from Sato’s [116] Sherlock model. In the
context of limited training tabular data and weak order-
dependence of table columns, the Star-Transformer is prefer-
able to the Transformer as it reduces the computational
complexity by replacing the fully-connected attention with
a sparser one.

5.4. Discussion

We have grouped the many STI approaches proposed
so far into three families or paradigms. In this section,
we further analyse these methods alongside different di-
mensions: the pros and cons of matching methods versus
learning methods, the trend towards deep learning meth-
ods, the importance of table elements, the trade-off be-

18

tween efficiency and accuracy, and the influence of the
target KG structure for improving the accuracy (but at
the risk of adding noise).

5.4.1. Matching vs Learning

We observe that STI approaches rely on matching (a
KG entity with a cell mention) and learning. Matching
is key in heuristic-based approaches while feature engi-
neering and deep learning based methods rely on repre-
sentation learning of the input table. These can also be
combined: the matching strategy is employed by learning-
based models as a post-processing step where the annota-
tions learned from neural networks are refined using mention-
matching entities (DAGOBAH Embeddings [23] and Col-
Net [24] are two examples).

From our observation, matching highly relies on the
compatibility between the target table and the target KG.
Consequently, it may be challenged by incompleteness in
the table, knowledge shifting of KG and incompatibility
between the table and the KG. Matching methods are less
robust to noise than the learning methods. On the other
hand, learning methods need large training datasets which
are not always easy to collect or generate. Some learning
approaches limit the number of target candidates to al-
leviate the lack of training data. [34, 48, 64, 79, 93, 104]
predict the CTA within a predefined set of around one hun-
dred types. ColNet [24] deals with the data shortfall using
data augmentation. The model is trained on data gener-
ated automatically from a KG. However, it takes hours to
do a single annotation. Another challenge for learning ap-
proaches is the size of target tables. To perform the CTA,
[48, 64, 79] rely on the statistical features computed from
the table (e.g., distribution of number, length of string for
each cell, etc.). These features are not statistically stable
if the number of samples (i.e. table cells) is low. Finally,
we also discovered that learning approaches do not con-
sider thoroughly the hierarchy of types possibly used in a
KG impacting the type specificity returned by the CTA
task [64, 79, 93].

5.4.2. Rise of Deep Learning

After 2017, deep learning techniques emerged in the
STI field and have attracted research focus. Compared
to feature engineering approaches, complex neuronal net-
works allow the system to process tabular features more
efficiently as the feature engineering step is sometimes dif-
ficult and time-consuming to maintain. For example, Sher-
lock [48] is based on 1588 column-wised features. To miti-
gate this issue, an end-to-end learning framework is prefer-
able and is more and more employed, for example, KG
modelling with KG embedding techniques (e.g., Vasilis et
al. [37]) and table modelling with BERT-like models (e.g.,
TCN [104]). However, we observe that table modelling
approaches using language models always target class an-
notation (CTA) or relation annotation (CPA) tasks. The
entity annotation task (CEA) still lacks dedicated work

and has a lot of room for improvement. At the time of con-
ducting this survey, TURL may be the only one that han-
dles the CEA task. Moreover, many systems [93, 104, 122]
try to simplify the table representation to a collection of
unordered lists for columns or rows, ignoring their index
and other structural information. TURL [34] proposes a
visibility matrix, as an attention matrix, to describe the
connections between table elements (e.g., cells in the same
columns, cells in the same rows, etc.). We argue that this
design is only applicable to relational tables whereas the
model is trained on a dataset containing all table types.
This limitation still requires more effort to cover more com-
plex scenarios.

5.4.3. Coverage of Table Elements

Annotation models use different table elements that
are analysed in depth in Section 4.2.3. We observe that
more and more table elements are considered in recent ap-
proaches. This phenomenon is characteristic of learning-
based models. [48, 64, 69, 79] primarily concentrate on ex-
tracting features from a single column. With the rise of the
deep learning and attention mechanism, [34, 93, 104, 116]
start to pay more attention to other complex table ele-
ments. A typical example is TURL [34], in which the
authors consider all of the six table elements discussed in
Section 4.2.3. However, we can not compare the superior-
ity of an approach only by the number of elements it uses.
The search for the right number of elements taken into
account to increase the accuracy without being subject to
noise remains an open challenge.

5.4.4. Effectiveness vs Efficiency

Annotation systems usually deal with a trade-off be-
tween effectiveness and efficiency. TableMiner+ [121] in-
troduces partial matching in which the CTA calculation
relies on only eight table rows in order to improve the per-
formance. This strategy indeed makes the systems faster
but degrades the accuracy. For example, considering the
annotation of a column containing [“Joe Biden”, “Donald
Trump”, “Barack Obama”, “Abe Shinzo”], applying par-
tial matching on the first three column cells will output
“American presidents” as the type of this column, while
the correct answer is more likely to be “politicians” since
“Abe Shinzo” is not an American president but a Japanese
prime minister. Systems whose annotation pipeline in-
cludes a candidate generation step will heavily depend on
the entity lookup service used. However, public lookup
endpoints impose several limitations on their usage and
it may take more time to obtain a candidate set with a
desirable coverage of the target table. Furthermore, some
systems (e.g., [70]) are not suitable for real-time applica-
tions due to the heavy computational requirements of their
intrinsic algorithm. In addition, in scenarios where there is
not enough data for training, learning-based models take
advantage of transfer learning. While it helps to save time
and resources, the system accuracy may be degraded if the
fine-tuning is not carefully performed.

19

5.4.5. Public KGs vs Custom KGs

Many approaches to annotate tables rely on encyclo-
pedic KGs such as Wikidata and DBpedia. Those KGs
provide rich and high-quality information helping the an-
notation become more effective. However, more informa-
tion also leads to more ambiguity, and KGs are usually
incomplete. Knowledge base shifting is also a challenge
for approaches based on public KGs. We observe that
some approaches [34, 48, 64, 93, 104, 79] only treat the
target KG as a dictionary of concepts but not a knowledge
network, which means the relationships and hierarchy of
concepts have not been used. The extreme case is that
some attention-based models [93] directly abandon KGs
and use only concept names. Knowing how to properly
inject a KG structure into a statistical model is an open
challenge. Some works build their custom KG to increase
the coverage. For example, [102] built an isA database us-
ing Web documents which contains three times more types
than Freebase.

6. Datasets and Benchmarks

Several datasets have been proposed to evaluate STI
approaches. Some datasets attempt to establish gold stan-
dards in which table components (cells, rows, columns,
or cell pairs) are associated with KG components (entity,
class, or property), while others collect high-quality ta-
bles to support STI training. In this section, we detail
the most popular datasets (Table 2) that are used by STI
approaches.

Limaye [60] is one of the earliest gold standards used
in the community. Limaye aims to annotate Web tables us-
ing the YAGO KG. The dataset is divided into four subsets
according to the data source, the labelling method, and ap-
plication scenarios. Three subsets are manually labelled
while the fourth one is automatically labelled. The auto-
matically labelled subset contains annotation errors [66]
which were corrected by [14]’s work in 2015. Later on, [37]
updated the disambiguation links to the DBpedia KG.

T2D [85] is taken from the Web Data Commons project.6

DBpedia is used as the target KG and extensive metadata
such as the context of the table and whether the table has
a header or not is provided. The addition of a small num-
ber of non-overlapping tables that do not have a mapping
relationship with DBpedia makes this gold standard closer
to real-world datasets. A second version of the gold stan-
dard adding negative examples has been published and
named T2Dv2 [59]. T2D and its supplementary version
T2Dv2 [59] have been largely used to evaluate approaches
in [24, 48, 121], and together with Limaye, they became
the de facto gold standard datasets to use for evaluating
STI approaches. However, [39] pointed out that T2D has
partial annotation errors and lacks fine-grained annota-
tions since a large number of tables only point to the root

6http://www.webdatacommons.org/webtables/

class owl:Thing. [39] has proposed a revised version of
the dataset named T2D*.

WDC [58] leverages the DWTC framework [36] to
crawl tables from the Web and to distinguish between dif-
ferent types of Web tables according to the inner-relation
dimension and the orientation dimension that have been
defined in Section 3.1. The crawler has extracted a total of
10.24 billion tables from which 0.9% are relational tables,
1.4% entity tables, and 0.03% are matrix tables, amount-
ing to 233 million tables available in the corpus. The rest
are labelled as layout tables or other tables. WDC also
provides a subset containing 90 million relational tables
and a subset containing 50 million English relational ta-
bles.

TabEL [14] (also named WikiTables) has collected 1.6
million Wikipedia tables which contain the class attribute
“wikitable” from the November 2019 XML English Wikipedia
dump. During the extraction, the system collects the hy-
perlinks in table cells and metadata of the table, such
as the table caption and the page title. Thus, the map-
pings between YAGO entities and table cells are easily
derived. The types of tables in this dataset are unknown.
QuTE [44] further enhanced the dataset by merging TabEL
with 2.6 million tables from the TableL [52] dataset that
were extracted from 1.5M Common Crawl Web pages us-
ing the DWTC framework [36]. The TableL dataset cov-
ers mostly five major topics: finance, environment, health,
politics, and sports. These datasets have generally been
used to train machine learning based STI approaches [14].

Zhang et al. [121] proposed datasets7 for evaluating
entity linking in Web tables, as well as table header clas-
sification and relation annotation. The datasets contain
16,000+ annotated relational tables that can be used for
many studies related to Web tables. In particular, it pro-
poses the IMDB (movie) and Musicbrainz (music) datasets
with cell entities and column headers annotated using Free-
base topics.

The SemTab competition (Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching8) colo-
cated with the International Semantic Web Conference in
2019, 2020 and 2021 provides the biggest datasets. This
competition has attracted nearly 50 participant teams over
the three years. The SemTab 2019 datasets [53] use DBpe-
dia as the target KG, while SemTab 2020 [54] uses Wiki-
data and SemTab 2021 [32] uses both DBpedia and Wiki-
data in addition to Schema.org for the last round. The
competition consists of four rounds in 2019 and 2020 and
three rounds in 2021. The data sources vary depending
on the rounds. SemTab 2019 Round 1 is a small number
of high-quality tables extracted from T2Dv2. Tables from
SemTab 2019 Round 2 are extracted from Wikipedia. Ex-
cept GitTables [47] and BiodivTab [4], the rounds from
SemTab contain a large number of artificially generated

7https://github.com/ziqizhang/data/tree/master/webtable%
20entity%20linking

8http://www.cs.ox.ac.uk/isg/challenges/sem-tab/

20

http://www.webdatacommons.org/webtables/
https://github.com/ziqizhang/data/tree/master/webtable%20entity%20linking
https://github.com/ziqizhang/data/tree/master/webtable%20entity%20linking
http://www.cs.ox.ac.uk/isg/challenges/sem-tab/

Table 2: Gold standard datasets for evaluating STI approaches. Table type refers to the classification introduced in Section 3.1 where
R=relational table, SR=single-cell relational table, V=vertical, H=horizontal.

Gold standard Table Type #Tables Avg. #Rows Avg. #Col #Entities #Class #Relations Origin KG Year

Limayea
Manual SR-H 437 37 2 10,930 747 90 Web Wikipedia, YAGO 2010

Wiki link SR-H 6,085 20 2 131,807 - - Web Wikipedia 2010

T2Db T2Dc SR-V 762 157 5 25,119 7983 - Web DBpedia 2015
T2Dv2d SR-V 779 84 5 26,106 755 - Web DBpedia 2017

WDCe All 233,000,000 12 4 - - - Web - 2015
TabELf R 1,652,771 11 5 3,000,000 - - Wikipedia YAGO 2015
QuTEg R 1,766,721 13 5 - - - Wikipedia - 2021

SemTab 2019h

R1 SR-H 64 142 5 8,418 120 116 Web DBpedia 2019
R2 SR-H 11,924 25 5 463,796 14,780 6,762 Web DBpedia 2019
R3 SR-H 2,161 71 5 406,827 14,780 7,575 Synthetic DBpedia 2019
R4 SR-H 713 63 4 107,352 1,732 2,747 Synthetic DBpedia 2019

SemTab 2020

R1 SR-H 34,295 7 5 985,110 34,294 135,774 Synthetic Wikidata 2020
R2 SR-H 12,173 7 5 283,447 26,727 43,753 Synthetic Wikidata 2020
R3 SR-H 62,614 6 4 768,325 97,586 166,633 Synthetic Wikidata 2020
R4 SR-H 22,207 21 4 1,662,164 32,462 56,476 Synthetic Wikidata 2020

ToughTables SR-H 180 1,080 5 663,830 539 - Synthetic Wikidata 2020

SemTab 2021

R1-DBP SR-H 180 1,081 4 663,656 540 - Synthetic DBpedia 2021
R1-WD SR-H 180 1,081 4 667,244 540 - Synthetic Wikidata 2021
R2-Bio SR-H 110 2,449 6 1,381,325 657 547 Synthetic Wikidata 2021

R2-Hard SR-H 1,750 17 3 47,440 2,191 3,836 Synthetic Wikidata 2021
R3-Hard SR-H 7,207 9 2 58,949 7,207 10,695 Synthetic Wikidata 2021
R3-Git SR-H 1,101 59 17 - 123 / 60 - Github DBpedia, Schema.org 2021

R3-BiodivTab SR-H 50 260 24 31,468 614 - Open data Wikidata 2021

ahttps://zenodo.org/record/3087000#.YbY5Lp7MJPY
bThe # class for the T2D dataset is the sum of the number of “table classes” and “column properties” in the original dataset.
chttp://webdatacommons.org/webtables/goldstandard.html
dhttp://webdatacommons.org/webtables/goldstandardV2.html
ehttp://www.webdatacommons.org/webtables/
fhttp://websail-fe.cs.northwestern.edu/TabEL/
ghttps://www.mpi-inf.mpg.de/research/quantity-search/quantity-table-extraction
hThe SemTab series are indexed at https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

tables annotated for a target KG using SPARQL queries
with the introduction of some noise such as misspellings.

The synthetic tables datasets can be used to test the
scalability of a system given their size and the large num-
ber of lookup candidates that can be returned. Neverthe-
less, these datasets are not extremely challenging for the
semantic interpretation approaches as they contain syn-
thetically generated noise. This explains the very high
accuracy of the top-performing approaches (F1 score up
to 0, 99 for some tasks [54]). There is also room for im-
provement in incorporating all real-world challenges in fu-
ture editions of the challenge, for example, tables with
cells containing multiple entities. To increase the diffi-
culty, SemTab 2020 introduces during round 4 the so-
called Tough Tables dataset [31]. Tough Tables is com-
posed of specially designed tabular data simulating various
difficulties: a large number of rows to evaluate the sys-
tems performance, non-Web tables and artificially added
misspellings and ambiguities.

In SemTab 2021, the organizers bring new challenges
with, in particular, the BiodivTab [4] dataset which con-
tains 50 manually annotated tables from real-world bio-
logical datasets. BiodivTab also contains artificially gen-
erated noises, abbreviations and complex data formats. A
subset of the GitTables dataset [47] has also been used in
the last round of SemTab 2021. This dataset is a collec-
tion of CSV tables from GitHub which are annotated with
DBpedia and Schema.org.

7. Evaluation

Traditionally, STI systems are evaluated using the in-
formation retrieval metrics: accuracy, recall, and F1 scores [23,
34, 53, 64, 121]. Among the various tasks, CTA is a special
one since a given type and its parents can be all correct
when determining the category of an entity or of a group
of entities. For example, Paris can be equally typed as a
capital or more generally as a city, which are not in con-
flict with each other. Considering only one of these types,
such as capital, as the only correct answer would make it
difficult to assess systems that can only predict the par-
ent class. The SemTab 2019 challenge has defined the AH
(Equation (1)) and AP (Equation (2)) scores for this pur-
pose, where PerfectA indicates that the predictions made
by an STI system exactly match the type declared in the
ground truth and OkayA refers to annotations correspond-
ing to one of the parent types. This evaluation method is
also adopted by [24]. The SemTab Challenge evaluates
systems using the AIcrowd evaluator9 and STILTool [29].

AH =
#PerfectA + 0.5×#OkayA−#WrongA

#TargetColumns
(1)

AP =
#PerfectA

#AnnotatedColumns
(2)

9https://github.com/sem-tab-challenge/aicrowd-evaluator

21

https://zenodo.org/record/3087000#.YbY5Lp7MJPY
http://webdatacommons.org/webtables/goldstandard.html
http://webdatacommons.org/webtables/goldstandardV2.html
http://www.webdatacommons.org/webtables/
http://websail-fe.cs.northwestern.edu/TabEL/
https://www.mpi-inf.mpg.de/research/quantity-search/quantity-table-extraction
https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
https://github.com/sem-tab-challenge/aicrowd-evaluator

SemTab 2020 and 2021 further enhance the CTA eval-
uation metrics by introducing the correctness score cscore
(Equation (3)) for correctly positioning the annotated type
in the hierarchy tree where d(α) indicates the distance be-
tween the annotation α and the ground truth.

cscore(α) =

 0.8d(α), if α is an ancestor of the GT,
0.7d(α), if α is a descendant of the GT,
0, otherwise;

(3)
Given the cscore, approximated Precision (AP), Recall

(AR), and F1-score (AF1) for the CTA evaluation are then
defined as follows:

AP =

∑
cscore(α)

#Annotations
, AR =

∑
cscore(α)

#Targets
(4)

AF1 =
2×AP ×AR
AP +AR

(5)

Table 3 gives the performance of the top three sys-
tems with the highest F1, AP, or AF1 scores for the CEA,
CTA and CPA tasks on the datasets commonly used by
the community. We observe a considerable diversity in
the evaluation process across studies. This diversity is re-
flected in: i) the original version of the Limaye dataset
had some errors that were corrected by the TabEL team.
However, these corrections are not used by STI systems; ii)
the TabEL and C2 teams only report on accuracy scores,
thus lacking an evaluation of the recall to compare with
other systems; iii) ColNet has further enhanced the T2D
dataset while other approaches do not consider these en-
hancements; iv) [56] provides aggregated results, and it is
hard to get the performance details per dataset, and v) the
performance of a system with the same dataset in differ-
ent articles can largely vary. For example, the difference
in accuracy between ColNet’s T2D dataset between [24]
and [56] is about 60%, probably because [56] has not used
all of ColNet’s settings. This diversity makes it difficult
to compare the performance of different STI systems and
stresses the importance of challenges such as SemTab in
the STI community.

We adopted the following strategy to produce Table 3:
i) we only consider datasets that have been used for eval-
uation more than three times. In addition, the datasets
used solely for training purposes (e.g., TabEL [14] and
Viznet [46]) have not been considered; ii) if the perfor-
mance of a system on the same dataset has been reported
multiple times, we only consider the accuracy from the
original paper; iii) we prioritize comparing F1 scores ex-
cept for CTAs in SemTab 2019, which take into account
the AP score. If F1 scores are not provided, we use pre-
cision for the comparison; iv) for the SemTab challenge,
we used the final results presented in the papers published
by the participants rather than the results achieved during
the time frame of the competition.

Based on our classification of STI approaches along
three paradigms, we observe that heuristic systems appear
in the top three systems for all datasets and all tasks. In
particular, none of the feature engineering systems or deep
learning systems reached the top three in the entity match-
ing tasks (CEA and Row-to-instance). We believe that one
of the main reason is that unlike CTA or CPA, which can
extract features from columns or column pairs (all column
cells can provide features such as entity embeddings, string
length, or distribution), features that can be used to anno-
tate individual cells or single rows are relatively rare. As
a result, it limits the performance of such systems. Fur-
thermore, the performance of a learning-based classifier is
related to the number of candidates used. Annotating an
entity means that a classifier should be trained to serve
millions of candidates, which makes the task more diffi-
cult. From this point of view, rare feature engineering
systems or deep learning systems position themselves for
the tasks of CEA and row-to-instance. Ideal STI systems
are therefore likely to be hybrid systems combining the
best of heuristic-based and deep learning based methods.

We further group the selected datasets according to
their provenance. These datasets are either synthetic ta-
bles automatically generated (e.g., SemTab datasets) or
tables collected from the Web (e.g., Limaye and T2D). We
observe that heuristic-based systems that follow an iter-
ative approach such as MTab, DAGOBAH, LinkingPark
and JenTab, achieve very strong performances on large
synthetic datasets such as SemTab. These systems gener-
ally use the entire target KG in order to get a very good
coverage. Leveraging inter-tasks process for iterative dis-
ambiguation further optimizes the performance of the sys-
tem. As these datasets are synthetically generated from a
KG, string matching based approaches have also more ad-
vantages since this matching setp is generally very reliable
and will not face challenges with KG incompleteness is-
sues. Systems that rely on statistical learning such as Col-
Net or Guo et al. [42], on the other hand, perform well on
smaller real-world datasets, like Limaye and T2D. It may
be because smaller datasets provide a limited set of can-
didate entities/types/relationships. Short candidate lists
make training more accessible, more efficient and more ac-
curate. In addition, heuristic approaches are highly based
on the closed world assumption, where KG incompleteness
is always a big issue. Deep learning and feature engineer-
ing are more robust on this point since they are not highly
dependent on the completeness of the KG. That may be
one of the reasons explaining that learning-based methods
such as ColNet or Guo et al. [42] have been able to be-
come one of the top three systems for real-world datasets
like Limaye and T2D.

8. Challenges and Future Directions

While recent works have made significant progress in
the field of STI, existing approaches have several limita-
tions: i) they mainly focus on single-cell subject within

22

Table 3: Top-3 systems for each dataset and their corresponding F1 score unless otherwise stated in the footnote.

Dataset CEA / Row-to-instance CTAa / Topic annotation CPA

Limayeb
TabELc TabEAnod [71] T2K ++ T2K ++ Guo et al MantisTable Mulwad et al. T2K ++ TableMiner+

0.894 0.88 0.87 0.88 0.852 0.84 0.89 0.80 0.76

T2D
TabEAno Zhang et al. Kruit et al. ColNete Alobaid et al. [5] MantisTable T2K ++ Singh et al. MantisTable

0.91 0.90 0.89 0.976 0.96 0.95 0.91 0.71 0.51

SemTab 2019

R2
MTab CSV2KG Tabularisi MTab CSV2KG Tabularisi CSV2KG IDLab Tabularisi
0.911 0.883 0.826 1.414 1.376 1.099 0.881 0.877 0.790

R3
MTab CSV2KG ADOG MTab CSV2KG Tabularisi MTab CSV2KG Tabularisi
0.970 0.962 0.912 1.956 1.864 1.702 0.844 0.841 0.827

R4
MTab MantisTable CSV2KG MTab CSV2KG Tabularisi MTab CSV2KG Tabularisi
0.983 0.973 0.907 2.012 1.846 1.716 0.832 0.830 0.823

SemTab 2020

R1
MTab LinkingPark MantisTable JenTab LinkingPark MTab MTab LinkingPark JenTab
0.987 0.987 0.982 0.962 0.926 0.885 0.971 0.967 0.963

R2
MTab DAGOBAHf LinkingPark LinkingPark MTab DAGOBAH MTab LinkingPark DAGOBAH
0.995 0.993 0.993 0.984 0.984 0.983 0.997 0.993 0.992

R3
MTab LinkingPark DAGOBAH LinkingPark MTab DAGOBAH MTab DAGOBAH bbw [89]
0.991 0.986 0.985 0.978 0.976 0.974 0.995 0.993 0.989

R4
MTab LinkingPark DAGOBAH MTab bbw DAGOBAH MTab bbw DAGOBAH
0.993 0.985 0.984 0.981 0.98 0.972 0.997 0.995 0.995

2T
MTab bbw DAGOBAH DAGOBAH MTab LinkingPark - - -
0.907 0.863 0.830 0.743 0.728 0.686 - - -

SemTab 2021

R1 (DBpedia)
DAGOBAH GBMTab JenTab JenTab DAGOBAH Magic - - -

0.945 0.692 0.607 0.46 0.422 0.159 - - -

R1 (WikiData)
DAGOBAH MTab AMALGAM [6] DAGOBAH MTab JenTab - - -

0.923 0.907 0.658 0.832 0.728 0.697 - - -

R2-Hard
MTab DAGOBAH MantisTable MTab DAGOBAH MantisTable MTab JenTab DAGOBAH
0.985 0.975 0.968 0.977 0.976 0.955 0.997 0.996 0.996

R2-Bio
DAGOBAH MTab MantisTable MTab Magic DAGOBAH MTab DAGOBAH JenTab

0.970 0.964 0.93 0.956 0.916 0.916 0.947 0.899 0.899

R3-Biodiv
JenTab MTab DAGOBAH KEPLER-aSI [7] DAGOBAH MTab - - -
0.602 0.522 0.496 0.593 0.391 0.123 - - -

R3-Hard
DAGOBAH MTab MantisTable DAGOBAH MTab MantisTable MTab JenTab DAGOBAH

0.974 0.968 0.959 0.99 0.984 0.965 0.993 0.992 0.991

R3-Git (DBp)
- - - DAGOBAH KEPLER-aSI MantisTable - - -
- - - 0.07 0.041 0.037 - - -

R3-Git (Sch)
- - - MantisTable DAGOBAH - - - -
- - - 0.205 0.183 - - - -

aFor SemTab 2019, we consider the AH score, while for SemTab 2020 and 2021, we consider the AF1 score
bWe consider only one of the Limaye subsets named Manual
cTabEL only reports about the accuracy of the system and not the F1 score
dTabEAno is a sub system of MTab
eColNet was evaluated on T2Dv2. Thus, we consider only the result from 237 PK columns, which is almost the 233 tables from T2D
fThis method is named DAGOBAH SL in [49, 50, 51]

relational or entity tables, and make strong assumptions
about the coherence and the simplicity of their layout; ii)
they are highly confident in both the completeness and the
correctness of the target KG; iii) they only partially lever-
age the information of the table, in both substance and
form. Based on these observations, we formulate some
possible guidelines to sketch the future directions for the
STI field.

8.1. Beyond Simple Table Type

From the literature, we observe that most of the works
focus on single-cell subject tables, the simplest type of
relational tables. A few approaches focus on entity tables
such as the infoboxes from Wikipedia pages [15, 109] but
the other types of tables defined in the classification we
proposed in Section 3.1 are still hardly handled. Moreover,
current approaches do not dig deeper into relational tables
complexities such as hidden subjects or composed subjects,
to name a few.

As a result, existing systems are far from being gener-
alizable to any table type. To fill the gap and stimulate
the search for new solutions, we believe it is important
to broaden the spectrum of corpus complexities. To that
end, we recommend creating new datasets with multiple

table structures and complex contents to tackle the whole
diversity of real-world data. We advise that content-level
complexity should not be restricted to noise added to men-
tions, whether synthetically or manually, as these artefacts
happened to be not so difficult to handle in the light of the
SemTab experience, as well as not so close to real data ta-
bles. Introducing numerical mentions with heterogeneous
units or lists within cells (multivalued tables), for instance,
could be more challenging and therefore beneficial for the
community. Last but not least, a ground truth shall be
associated with these datasets to allow a fair comparison
between the future approaches. This latter requirement
suggests prioritizing quality over quantity for evaluation
datasets to bootstrap new challenges quickly.

8.2. KG Incompleteness and Incorrectness

Existing approaches assume that the target KG is com-
plete and error-free. As a consequence, an annotation can
always be generated even if the correct result is not in the
KG, whether it concerns an instance, a type or a relation.
This situation can be harmful, especially as it may spread
the error from one annotation to the whole column or even
the whole table. Suppose for instance a table where a col-
umn contains the last names of writers (which can be very

23

common), and another column related to books’ titles (for
the sake of the example, we assume the majority of these
books have been adapted for the cinema). If the target KG
covers extensively movies but only a few literature works
(or is less accurate on books than movies), the annotation
process might lead to type the second column as “film”,
which could lead to wrongly disambiguate the mentions in
the first column (if some related actors have similar last
names for example). As a result, this table will be in-
terpreted as an actors-movies item instead of the correct
writers-books target.

Some existing mechanisms, such as giving a confidence
score for each candidate, can help filtering the incorrect
annotations further. The T2Dv2 benchmark, for instance,
added negative examples that can be leveraged to that
end. However, rare studies focus on this challenge which
is far from being trivial as it implies to have the capability
to identify the KG coverage w.r.t. the tables to be pro-
cessed, as well as to detect the possible errors. To improve
both the completeness and the correctness, we believe that
leveraging multiple KGs is the first step to make. Indeed,
it could enhance the coverage and provide a basis for confi-
dence scoring through popularity computation. However,
evaluation procedures should be discussed and updated as
judging from different sources might be challenging. Fi-
nally, we emphasize that future approaches should also
consider to tackle domains where only nascent KGs exist,
with the objective of using STI to augment these KGs in
a virtuous iterative loop.

In Table 3, many annotation systems (e.g., MTab,-
DAGOBAH SL) achieve very high performances on some
synthetic datasets (e.g., SemTab 2020, SemTab 2021 R2-
Hard). This can be explained since synthetic tables are
automatically and accurately generated using a reference
KG (see Section 6). Therefore, their content is almost fully
represented in the KG and provides rich discriminative in-
formation for the disambiguation. In contrast, manually
curated tables (R3-BiodivTable), complex tables (Tough-
Table), or tables coming from diverse and specific domains
(R3-GitTables) are still particularly challenging for anno-
tation systems. In real situations, KGs are often incom-
plete. As a consequence, an existing entity may not be
fully described in a KG (e.g., lack of literal attributes for
a given entity), or an unpopular/heterogeneous domain
may provide little information (e.g., R3-GitTables is made
of tables from GitHub). Hence, the graph context pro-
vided by the KG can sometimes be insufficient for dis-
ambiguating tables in R3-BiodivTable, ToughTable, and
R3-GitTables, which are much more ambiguous than syn-
thetic tables. We argue that annotation systems should
enrich and better handle both explicit and implicit contex-
tual information by exploiting knowledge graph reasoning
or table representation learning (e.g., Transformer) to im-
prove the performance on these kinds of table datasets.

8.3. Table Context

We observe that many approaches leverage only par-
tially the elements of the table (see Table 1), even if more
recent ones tend to extend their view. As we discussed in
Section 5.4.3, we believe that leveraging as many elements
as possible should increase the accuracy by adding more
contextual information. In that sense, language models
generated from transformers could be better used. Indeed,
one could consider a table as a way of structuring the lan-
guage: in the simplest case, one table row can be seen as
a sentence describing a subject with some attributes. The
same applies to the corresponding sub-graph in the target
KG. Thus, sentence representation could be used to com-
pute similarities. Nonetheless, the specificity of tabular
data as well as KGs should be taken into account, which
implies adapting attention mechanisms to this very struc-
ture. The visibility matrix used in [34] is an attempt to do
so in relational tables, but it should be extended to other
types of tabular data.

We also notice that most approaches treat tables inde-
pendently. However, some tables are related to each other
since they can be generated with the same template, be
part of a coherent corpus of tables or related to keys such
as SQL database tables. Inter-table relations as studied
by [104] can constitute an interesting complementary ap-
proach with appropriate target tables. We believe that
STI systems could significantly take advantage of combin-
ing table elements with inter-table connections, which can
be considered as another context layer added to capture
richer prior information about the data to be processed.

9. Conclusion

The last few years have seen significant growth in the
field of STI, with the development of many new approaches
and the proposal of ever more complete datasets, notably
under the impulse of initiatives such as the SemTab chal-
lenge. In this survey, we have provided a comprehensive
and up-to-date overview of the STI field. Our work also
gathers and proposes a set of definitions to structure and
unify the field. It first defines the inputs (the different
types of tables, their context and their metadata) of the
STI process as well as the KGs used both as a support and
as a repository to be enriched via the STI process. Then,
we propose a generic pipeline for STI and a description
of the different tasks performed by existing approaches.
These are classified into three families, heuristics, feature
engineering and deep learning, with an emphasis on the
strengths and weaknesses of each.

We have also summarized what are the performances of
the various approaches on the datasets that have been pro-
posed in the community. We have highlighted the best per-
forming systems for each dataset. Finally, we have listed
several challenges to address for improving STI systems.
We observe that recent works have tried to develop mod-
ern web-based user interfaces on top of STI systems such

24

as [87] which will undoubtedly empower end-users when
adopting these systems.

References

[1] Abdelmageed, N., Schindler, S.: JenTab: Matching Tabular
Data to Knowledge Graphs. In: Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching (SemTab). pp.
40–49 (2020)

[2] Abdelmageed, N., Schindler, S.: JenTab: A Toolkit for Se-
mantic Table Annotations. In: 2nd International Workshop on
Knowledge Graph Construction (2021)

[3] Abdelmageed, N., Schindler, S.: JenTab Meets SemTab 2021s
New Challenges. In: Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching (SemTab) (2021)

[4] Abdelmageed, N., Schindler, S., König-Ries, B.: BiodivTab:
A Tabular Benchmark based on Biodiversity Research Data.
In: Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab) (2021)

[5] Alobaid, A., Corcho, O.: Balancing coverage and specificity
for semantic labelling of subject columns. Knowledge-Based
Systems p. 108092 (2022)

[6] Azzi, R., Diallo, G.: AMALGAM: making tabular dataset ex-
plicit with knowledge graph. In: Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching (SemTab). pp.
9–16 (2020)

[7] Baazouzi, W., Kachroudi, M., Faiz, S.: KEPLER-asi at
SemTab 2021. In: Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching (SemTab) (2021)

[8] Badaro, G., Saeed, M., Papotti, P.: Transformers for Tab-
ular Data Representation: A survey of models and applica-
tions. Tech. rep., EURECOM (2021), https://www.eurecom.
fr/publication/6721

[9] Banko, M., Etzioni, O.: The tradeoffs between open and tradi-
tional relation extraction. In: ACL-08: HLT. pp. 28–36 (2008)

[10] Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Moris-
sette, J.: Bio2RDF: towards a mashup to build bioinformatics
knowledge systems. Journal of biomedical informatics 41(5),
706–716 (2008)

[11] Benjelloun, O., Chen, S., Noy, N.: Google Dataset Search
by the Numbers. In: International Semantic Web Conference
(ISWC), In-Use Track (2020)

[12] Berners-Lee, T.: Linked Data - Design Issues. http://www.w3.
org/DesignIssues/LinkedData.html (2006)

[13] Bhagavatula, C.S., Noraset, T., Downey, D.: Methods for ex-
ploring and mining tables on wikipedia. In: ACM SIGKDD
workshop on interactive data exploration and analytics. pp.
18–26 (2013)

[14] Bhagavatula, C.S., Noraset, T., Downey, D.: Tabel: Entity
linking in web tables. In: 14th International Semantic Web
Conference. pp. 425–441. Springer (2015)

[15] Biswas, R., Türker, R., Moghaddam, F.B., Koutraki, M., Sack,
H.: Wikipedia Infobox Type Prediction Using Embeddings. In:
DL4KGS@ ESWC. pp. 46–55 (2018)

[16] Bizer, C., Heath, T., Berners-Lee, T.: Linked data: The story
so far. In: International Journal on Semantic Web and Infor-
mation Systems, pp. 205–227. IGI global (2009)

[17] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C.,
Cyganiak, R., Hellmann, S.: DBpedia-A crystallization point
for the Web of Data. Journal of web semantics 7(3), 154–165
(2009)

[18] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.:
Freebase: a collaboratively created graph database for struc-
turing human knowledge. In: ACM SIGMOD International
Conference on Management of Data (2008)

[19] Bonfitto, S., Casiraghi, E., Mesiti, M.: Table understand-
ing approaches for extracting knowledge from heterogeneous
tables. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery p. e1407 (2021)

[20] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J.,
Yakhnenko, O.: Translating embeddings for modeling multi-
relational data. Advances in neural information processing sys-
tems 26 (2013)

[21] Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., Kasneci, G.: Deep neural networks and tabular data: A
survey. arXiv:2110.01889 (2021)

[22] Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.:
Webtables: exploring the power of tables on the web. In:
VLDB Endowment. pp. 538–549. VLDB Endowment (2008)

[23] Chabot, Y., Labbe, T., Liu, J., Troncy, R.: DAGOBAH: an
end-to-end context-free tabular data semantic annotation sys-
tem. In: Semantic Web Challenge on Tabular Data to Knowl-
edge Graph Matching. pp. 41–48 (2019)

[24] Chen, J., Jimenez-Ruiz, E., Horrocks, I., Sutton, C.: ColNet:
Embedding the Semantics of Web Tables for Column Type
Prediction. In: 33rd AAAI International Conference on Artifi-
cial Intelligence (2018)

[25] Chen, S., Karaoglu, A., Negreanu, C., Ma, T., Yao, J.G.,
Williams, J., Gordon, A., Lin, C.Y.: Linkingpark: An in-
tegrated approach for semantic table interpretation. In: Se-
mantic Web Challenge on Tabular Data to Knowledge Graph
Matching (SemTab) (2020)

[26] Cremaschi, M., Avogadro, R., Barazzetti, A., Chieregato, D.:
MantisTable SE: an Efficient Approach for the Semantic Table
Interpretation. In: Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching (SemTab) (2020)

[27] Cremaschi, M., Avogadro, R., Chieregato, D.: MantisTable:
an Automatic Approach for the Semantic Table Interpretation.
In: Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab). pp. 15–24 (2019)

[28] Cremaschi, M., De Paoli, F., Rula, A., Spahiu, B.: A fully au-
tomated approach to a complete semantic table interpretation.
Future Generation Computer Systems 112, 478–500 (2020)

[29] Cremaschi, M., Siano, A., Avogadro, R., Jimenez-Ruiz, E.,
Maurino, A.: STILTool: a semantic table interpretation evalu-
ation tool. In: European Semantic Web Conference. pp. 61–66.
Springer (2020)

[30] Crestan, E., Pantel, P.: Web-scale table census and classifi-
cation. In: 4th ACM International Conference on Web Search
and Data Mining (WSDM). pp. 545–554 (2011)

[31] Cutrona, V., Bianchi, F., Jiménez-Ruiz, E., Palmonari, M.:
Tough tables: Carefully evaluating entity linking for tabu-
lar data. In: 19th International Semantic Web Conference
(ISWC). pp. 328–343. Springer (2020)

[32] Cutrona, V., Chen, J., Efthymiou, V., Hassanzadeh, O.,
Jiménez-Ruiz, E., Sequeda, J., Srinivas, K., Abdelmageed, N.,
Hulsebos, M., Oliveira10, D., et al.: Results of SemTab 2021.
In: CEUR Workshop Proceedings (2021)

[33] Deng, D., Jiang, Y., Li, G., Li, J., Yu, C.: Scalable column
concept determination for web tables using large knowledge
bases. In: PVLDB. pp. 1606–1617. VLDB Endowment (2013)

[34] Deng, X., Sun, H., Lees, A., Wu, Y., Yu, C.:
TURL: Table Understanding through Representation Learn-
ing. arXiv:2006.14806 (2020)

[35] Eberius, J., Braunschweig, K., Hentsch, M., Thiele, M., Ah-
madov, A., Lehner, W.: Building the dresden web table corpus:
A classification approach. In: IEEE 2nd International Sympo-
sium on Big Data Computing (BDC). pp. 41–50. IEEE (2015)

[36] Eberius, J., Thiele, M., Braunschweig, K., Lehner, W.: Top-k
Entity Augmentation Using Consistent Set Covering. In: SS-
DBM (2015)

[37] Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M.,
Christophides, V.: Matching web tables with knowledge base
entities: from entity lookups to entity embeddings. In: 16th

International Semantic Web Conference (ISWC). pp. 260–277.
Springer (2017)

[38] Ehrlinger, L., Wöß, W.: Towards a Definition of Knowledge
Graphs. SEMANTiCS 48(1-4), 2 (2016)

[39] Ermilov, I., Ngomo, A.C.N.: TAIPAN: automatic property
mapping for tabular data. In: European Knowledge Acquisi-

25

https://www.eurecom.fr/publication/6721
https://www.eurecom.fr/publication/6721
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

tion Workshop. pp. 163–179. Springer (2016)
[40] Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance match-

ing model for ad-hoc retrieval. In: the 25th ACM international
on conference on information and knowledge management. pp.
55–64 (2016)

[41] Guo, Q., Qiu, X., Liu, P., Shao, Y., Xue, X., Zhang, Z.: Star-
transformer. arXiv:1902.09113 (2019)

[42] Guo, T., Shen, D., Nie, T., Kou, Y.: Web table column type
detection using deep learning and probability graph model.
In: International Conference on Web Information Systems and
Applications. pp. 401–414. Springer (2020)

[43] Habibi, M., Starlinger, J., Leser, U.: DeepTable: a permuta-
tion invariant neural network for table orientation classifica-
tion. Data Mining and Knowledge Discovery pp. 1–21 (2020)

[44] Ho, V.T., Pal, K., Weikum, G.: QuTE: Answering Quan-
tity Queries from Web Tables. In: International Conference
on Management of Data. pp. 2740–2744 (2021)

[45] Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo,
G., Gutierrez, C., Gayo, J.E.L., Kirrane, S., Neumaier, S.,
Polleres, A., et al.: Knowledge graphs. arXiv:2003.02320
(2020)

[46] Hu, K., Gaikwad, S., Hulsebos, M., Bakker, M.A., Zgraggen,
E., Hidalgo, C., Kraska, T., Li, G., Satyanarayan, A., Demi-
ralp, Ç.: Viznet: Towards a large-scale visualization learning
and benchmarking repository. In: CHI Conference on Human
Factors in Computing Systems. pp. 1–12 (2019)

[47] Hulsebos, M., Demiralp, c., Groth, P.: GitTables: A Large-
Scale Corpus of Relational Tables. arXiv:2106.07258 (2021)

[48] Hulsebos, M., Hu, K., Bakker, M., Zgraggen, E., Satya-
narayan, A., Kraska, T., Demiralp, Ç., Hidalgo, C.: Sherlock:
A deep learning approach to semantic data type detection. In:
25th ACM International Conference on Knowledge Discovery
& Data Mining (SIGKDD). pp. 1500–1508 (2019)

[49] Huynh, V.P., Chabot, Y., Labbé, T., Liu, J., Troncy, R.:
From Heuristics to Language Models: A Journey Through the
Universe of Semantic Table Interpretation with DAGOBAH.
In: Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab) (2022)

[50] Huynh, V.P., Liu, J., Chabot, Y., Deuzé, F., Labbé, T., Mon-
nin, P., Troncy, R.: DAGOBAH: Table and Graph Contexts
for Efficient Semantic Annotation of Tabular Data. In: Se-
mantic Web Challenge on Tabular Data to Knowledge Graph
Matching (SemTab) (2021)

[51] Huynh, V.P., Liu, J., Chabot, Y., Labbé, T., Monnin, P.,
Troncy, R.: DAGOBAH: Enhanced Scoring Algorithms for
Scalable Annotations of Tabular Data. In: Semantic Web
Challenge on Tabular Data to Knowledge Graph Matching
(SemTab) (2020)

[52] Ibrahim, Y., Riedewald, M., Weikum, G., Zeinalipour-Yazti,
D.: Bridging quantities in tables and text. In: 2019 IEEE
35th International Conference on Data Engineering (ICDE).
pp. 1010–1021. IEEE (2019)

[53] Jiménez-Ruiz, E., Hassanzadeh, O., Efthymiou, V., Chen, J.,
Srinivas, K.: SemTab 2019: Resources to Benchmark Tabular
Data to Knowledge Graph Matching Systems. In: European
Semantic Web Conference (ESWC). pp. 514–530. Springer
(2020)

[54] Jiménez-Ruiz, E., Hassanzadeh, O., Efthymiou, V., Chen, J.,
Srinivas, K., Cutrona, V.: Results of SemTab 2020. In: CEUR
Workshop Proceedings. vol. 2775, pp. 1–8 (2020)

[55] Kacprzak, E., Giménez-Garćıa, J.M., Piscopo, A., Koesten,
L., Ibáñez, L.D., Tennison, J., Simperl, E.: Making sense
of numerical data-semantic labelling of web tables. In: Euro-
pean Knowledge Acquisition Workshop. pp. 163–178. Springer
(2018)

[56] Khurana, U., Galhotra, S.: Semantic annotation for tabular
data (2019)

[57] Lautert, L.R., Scheidt, M.M., Dorneles, C.F.: Web table tax-
onomy and formalization. ACM SIGMOD Record 42(3), 28–33
(2013)

[58] Lehmberg, O., Ritze, D., Meusel, R., Bizer, C.: A large public

corpus of web tables containing time and context metadata.
In: 25th International Conference Companion on World Wide
Web. pp. 75–76 (2016)

[59] Lehmberg, O., Ritze, D., Meusel, R., Bizer, C.: A Large Public
Corpus of Web Tables containing Time and Context Metadata.
In: 25th International Conference Companion on World Wide
Web (WWW Companion). pp. 75–76 (2016)

[60] Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and
searching web tables using entities, types and relationships.
Proceedings of the VLDB Endowment 3(1-2), 1338–1347
(2010)

[61] Liu, J., Huynh, V.P., Chabot, Y., Troncy, R.: Radar Station:
Using KG Embeddings for Semantic Table Interpretation and
Entity Disambiguation. In: 21st International Semantic Web
Conference (ISWC) (2022)

[62] Martinez-Rodriguez, J.L., Hogan, A., Lopez-Arevalo, I.: Infor-
mation extraction meets the semantic web: a survey. Semantic
Web Journal 11(2), 255–235 (2020)

[63] Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: DBpedia
spotlight: shedding light on the web of documents. In: 7th

International Conference on Semantic Systems. pp. 1–8 (2011)
[64] Minh, P., Suresh, A., Craig, A.K., Pedro, S.: Semantic Label-

ing: A Domain-Independent Approach. In: 15th International
Semantic Web Conference (ISWC). pp. 446–462 (2016)

[65] Morikawa, H.: Semantic Table Interpretation using
LOD4ALL. In: Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab). pp. 49–56 (2019)

[66] Mulwad, V., Finin, T., Joshi, A.: Semantic message passing for
generating linked data from tables. In: 12th International Se-
mantic Web Conference (ISWC). pp. 363–378. Springer (2013)

[67] Mulwad, V., Finin, T., Syed, Z., Joshi, A., et al.: Using linked
data to interpret tables. In: 1st International Workshop on
Consuming Linked Data (COLD) (2010)

[68] Nakashole, N., Weikum, G., Suchanek, F.: PATTY: A taxon-
omy of relational patterns with semantic types. In: Empirical
Methods in Natural Language Processing and Computational
Natural Language Learning. pp. 1135–1145 (2012)

[69] Neumaier, S., Umbrich, J., Parreira, J.X., Polleres, A.: Multi-
level semantic labelling of numerical values. In: 15th Interna-
tional Semantic Web Conference (ISWC). pp. 428–445 (2016)

[70] Nguyen, P., Kertkeidkachorn, N., Ichise, R., Takeda, H.:
MTab: Matching Tabular Data to Knowledge Graph using
Probability Models. In: Semantic Web Challenge on Tabular
Data to Knowledge Graph Matching (SemTab) (2019)

[71] Nguyen, P., Kertkeidkachorn, N., Ichise, R., Takeda, H.:
TabEAno: table to knowledge graph entity annotation.
arXiv:2010.01829 (2020)

[72] Nguyen, P., Nguyen, K., Ichise, R., Takeda, H.: Embnum: Se-
mantic labeling for numerical values with deep metric learning.
In: Joint International Semantic Technology Conference. pp.
119–135. Springer (2018)

[73] Nguyen, P., Yamada, I., Kertkeidkachorn, N., Ichise, R.,
Takeda, H.: Mtab4wikidata at semtab 2020: Tabular data an-
notation with wikidata. In: Semantic Web Challenge on Tab-
ular Data to Knowledge Graph Matching (SemTab) (2020)

[74] Nguyen, P., Yamada, I., Kertkeidkachorn, N., Ichise, R.,
Takeda, H.: SemTab 2021: Tabular Data Annotation with
MTab Tool. In: Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab) (2021)

[75] Noy, N., Burgess, M., Brickley, D.: Google Dataset Search:
Building a search engine for datasets in an open Web ecosys-
tem. In: 28th The Web Conference (WWW) (2019)

[76] Oliveira, D., d’Aquin, M.: Adog-annotating data with ontolo-
gies and graphs. In: Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching (SemTab) (2019)

[77] Pasupat, P., Liang, P.: Compositional semantic parsing on
semi-structured tables. arXiv:1508.00305 (2015)

[78] Penn, G., Hu, J., Luo, H., McDonald, R.: Flexible web
document analysis for delivery to narrow-bandwidth devices.
In: 6th International Conference on Document Analysis and
Recognition. pp. 1074–1078. IEEE (2001)

26

[79] Ramnandan, S.K., Mittal, A., Knoblock, C.A., Szekely, P.: As-
signing semantic labels to data sources. In: European Semantic
Web Conference (ESWC). pp. 403–417. Springer (2015)

[80] Riley, J.: Understanding metadata. http://www.niso.org/
publications/press/UnderstandingMetadata.pdf (2017)

[81] Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings
for data mining. In: International Semantic Web Conference.
pp. 498–514. Springer (2016)

[82] Ritze, D.: Web-scale web table to knowledge base matching.
Ph.D. thesis, University of Mannheim (2017)

[83] Ritze, D., Bizer, C.: Matching Web Tables To DBpedia - A
Feature Utility Study. In: International Conference on Extend-
ing Database Technology (EDBT). pp. 210–221 (2017)

[84] Ritze, D., Lehmberg, O., Bizer, C.: Matching html tables to
dbpedia. In: 5th International Conference on Web Intelligence,
Mining and Semantics. pp. 1–6 (2015)

[85] Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML Tables
to DBpedia. In: 5th International Conference on Web Intelli-
gence, Mining and Semantics (WIMS). pp. 1–6 (2015)

[86] Robertson, S., Zaragoza, H.: The probabilistic relevance
framework: BM25 and beyond. Now Publishers Inc (2009)

[87] Sarthou-Camy, C., Jourdain, G., Chabot, Y., Monnin,
P., Deuzé, Huynh, V.P., Liu, J., Labbé, T., Troncy, R.:
DAGOBAH UI: A New Hope For Semantic Table Interpreta-
tion. In: 19th European Semantic Web Conference (ESWC),
Poster and Demo Track (2022)

[88] Sekhavat, Y.A., Di Paolo, F., Barbosa, D., Merialdo, P.:
Knowledge base augmentation using tabular data. In: LDOW
(2014)

[89] Shigapov, R., Zumstein, P., Kamlah, J., Oberländer, L., Mech-
nich, J., Schumm, I.: bbw: Matching CSV to Wikidata via
Meta-lookup. In: Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching (SemTab). vol. 2775, pp. 17–
26. RWTH (2020)

[90] Singh, G., Singh, S., Wong, J., Saffari, A.: Relation Ex-
traction from Tables using Artificially Generated Metadata.
arXiv:2108.10750 (2021)

[91] Steenwinckel, B., De Turck, F., Ongeane, F.: MAGIC: Mining
an Augmented Graph using INK, starting from a CSV. In: Se-
mantic Web Challenge on Tabular Data to Knowledge Graph
Matching (SemTab) (2021)

[92] Steenwinckel, B., Vandewiele, G., De Turck, F., Ongenae, F.:
Csv2kg: Transforming tabular data into semantic knowledge.
In: Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab) (2019)

[93] Suhara, Y., Li, J., Li, Y., Zhang, D., Demiralp, Ç., Chen, C.,
Tan, W.C.: Annotating Columns with Pre-trained Language
Models. arXiv:2104.01785 (2021)

[94] Sun, H., Ma, H., He, X., Yih, W.t., Su, Y., Yan, X.: Table cell
search for question answering. In: 25th International Confer-
ence on World Wide Web. pp. 771–782 (2016)

[95] Talukdar, P.P., Wijaya, D., Mitchell, T.: Acquiring temporal
constraints between relations. In: the 21st ACM international
conference on Information and knowledge management. pp.
992–1001 (2012)

[96] Tanon, T.P., Weikum, G., Suchanek, F.: YAGO 4: A Reason-
able Knowledge Base. In: European Semantic Web Conference
(ESWC). pp. 583–596. Springer (2020)

[97] Tao, C., Embley, D.W.: Automatic hidden-web table interpre-
tation, conceptualization, and semantic annotation. Data &
Knowledge Engineering 68(7), 683–703 (2009)

[98] Thawani, A., Hu, M., Hu, E., Zafar, H., Divvala, N.T., Singh,
A., Qasemi, E., Szekely, P.A., Pujara, J.: Entity Linking to
Knowledge Graphs to Infer Column Types and Properties.
In: Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab). vol. 2019, pp. 25–32 (2019)

[99] Thornton, P.K., Stroud, A., Hatibu, N., Legg, C., Ly, S.,
Twomlow, S., Molapong, K., Notenbaert, A., Kruska, R., von
Kaufmann, R.: Site selection to test an integrated approach
to agricultural research for development: combining expert
knowledge and participatory Geographic Information System

methods. International Journal of Agricultural Sustainability
4(1), 39–60 (2006)

[100] Van Eeden, W., De Villiers, J.P., Berndt, R., Nel, W.A.,
Blasch, E.: Micro-Doppler radar classification of humans and
animals in an operational environment. Expert Systems with
Applications 102, 1–11 (2018)

[101] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you
need. arXiv:1706.03762 (2017)

[102] Venetis, P., Halevy, A.Y., Madhavan, J., Pasca, M., Shen, W.,
Wu, F., Miao, G.: Recovering semantics of tables on the web.
PVLDB 4(9), 528–538 (2011)

[103] Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative
knowledge base. Communications of the ACM 57(10), 78–85
(2014)

[104] Wang, D., Shiralkar, P., Lockard, C., Huang, B., Dong, X.L.,
Jiang, M.: Tcn: Table convolutional network for web table
interpretation. arXiv:2102.09460 (2021)

[105] Wang, J., Wang, H., Wang, Z., Zhu, K.Q.: Understanding
tables on the web. In: International Conference on Conceptual
Modeling. pp. 141–155. Springer (2012)

[106] Wang, Y., Hu, J.: Detecting tables in HTML documents. In:
5th IAPR International Workshop on Document Analysis Sys-
tems. pp. 249–260. Springer (2002)

[107] Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph em-
bedding by translating on hyperplanes. In: AAAI Conference
on Artificial Intelligence (2014)

[108] Wang, Z., Dong, H., Jia, R., Li, J., Fu, Z., Han, S., Zhang,
D.: TUTA: Tree-based Transformers for Generally Structured
Table Pre-training. In: 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. pp. 1780–1790 (2021)

[109] Wu, F., Weld, D.S.: Automatically refining the wikipedia in-
fobox ontology. In: 17th international conference on World
Wide Web. pp. 635–644 (2008)

[110] Wu, W., Li, H., Wang, H., Zhu, K.Q.: Inferring a universal
probabilistic taxonomy from the web. Tech. rep., Technical
report, Microsoft Research (2010)

[111] Xiaoxue, L., Xuesong, B., Longhe, W., Bingyuan, R., Shuhan,
L., Lin, L.: Review and trend analysis of knowledge graphs for
crop pest and diseases. IEEE Access 7, 62251–62264 (2019)

[112] Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: In-
fogather: entity augmentation and attribute discovery by holis-
tic matching with web tables. In: ACM SIGMOD International
Conference on Management of Data. pp. 97–108 (2012)

[113] Yin, P., Neubig, G., Yih, W.t., Riedel, S.: TaBERT: Pre-
training for Joint Understanding of Textual and Tabular Data
(2020)

[114] Yusof, M.M., Rosli, N.F., Othman, M., Mohamed, R., Ab-
dullah, M.H.A.: M-DCocoa: M-agriculture expert system for
diagnosing cocoa plant diseases. In: International Conference
on Soft Computing and Data Mining. pp. 363–371. Springer
(2018)

[115] Zhang, A., Gourley, D.: Creating digital collections: a practi-
cal guide. Elsevier (2008)

[116] Zhang, D., Suhara, Y., Li, J., Hulsebos, M., Demiralp, Ç., Tan,
W.C.: Sato: Contextual Semantic Type Detection in Tables
(2019)

[117] Zhang, S., Balog, K.: Recommending related tables.
arXiv:1907.03595 (2019)

[118] Zhang, S., Balog, K.: Web table extraction, retrieval, and aug-
mentation: A survey. ACM Transactions on Intelligent Sys-
tems and Technology (TIST) 11(2), 1–35 (2020)

[119] Zhang, S., Meij, E., Balog, K., Reinanda, R.: Novel entity
discovery from web tables. In: The Web Conference. pp. 1298–
1308 (2020)

[120] Zhang, Z.: Towards efficient and effective semantic table in-
terpretation. In: 3th International Semantic Web Conference.
pp. 487–502. Springer (2014)

[121] Zhang, Z.: Effective and efficient semantic table interpretation
using tableminer+. Semantic Web 8(6), 921–957 (2017)

[122] Zhou, Y., Singh, S., Christodoulopoulos, C.: Tabular Data

27

http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf

Concept Type Detection Using Star-Transformers. In: Pro-
ceedings of the 30th ACM International Conference on Infor-
mation & Knowledge Management. pp. 3677–3681 (2021)

[123] Zwicklbauer, S., Einsiedler, C., Granitzer, M., Seifert, C.: To-
wards Disambiguating Web Tables. In: International Semantic
Web Conference (Posters & Demos). pp. 205–208 (2013)

[124] Zwicklbauer, S., Seifert, C., Granitzer, M.: Do We Need
Entity-Centric Knowledge Bases for Entity Disambiguation?
In: 13th International Conference on Knowledge Management
and Knowledge Technologies. pp. 1–8 (2013)

28

	Introduction
	Research Methodology
	Preliminaries
	Tables
	Structure Dimension
	Inner-relationship Dimension
	Orientation Dimension
	Table Types Statistics

	Metadata
	Knowledge Graphs

	Annotation Tasks and Pipeline
	Annotation Tasks
	Annotation Pipeline
	Pre-Processing
	Candidate Generation
	Table Elements Processing
	Iterative Disambiguation

	Semantic Table Interpretation Approaches
	Heuristic Approaches
	Lookup Based Approaches
	Iterative Approaches

	Feature Engineering based Approaches
	Deep Learning based Approaches
	KG Modelling
	Table Modelling

	Discussion
	Matching vs Learning
	Rise of Deep Learning
	Coverage of Table Elements
	Effectiveness vs Efficiency
	Public KGs vs Custom KGs

	Datasets and Benchmarks
	Evaluation
	Challenges and Future Directions
	Beyond Simple Table Type
	KG Incompleteness and Incorrectness
	Table Context

	Conclusion

